制冷循环原理3.1蒸气压缩式制冷原理如果制冷工质的状态变化跨越液、气两态,则制冷循环称为蒸气压缩制冷循 环蒸气压缩制冷装置是目前使用最广泛的一种制冷装置,绝大多数家用冰箱、 空调机、冷柜等都是采用蒸气压缩式制冷3.1.1单级蒸气压缩制冷循环分析家用冰箱、空调机、冷柜等制冷装置的功能、结构形式、整体布局虽然不同, 其主要部件都包括压缩机、冷凝器、膨胀阀(或称节流阀)和蒸发器四部分通 过简化如图3-1所示图3-1是蒸气压缩制冷装置制冷循环示意图其工作循环如下:经过膨胀阀(毛细管)绝热节流,降压降温至状态4的湿蒸气进入蒸发器(冷库),进行定 压蒸发吸热,离开蒸发器时已成为干饱和蒸气;从蒸发器出来的状态1的干饱和 蒸气被吸入压缩机进行压缩,升压、升温至过热蒸气状态2;进入冷凝器,进行 定压放热,凝结为液体3;从冷凝器出来的液体经过膨胀阀(毛细管)节流降压 至湿蒸气状态4进入蒸发器(冷库),从而完成了一个循环4-1-2-3-4蒸气压缩式制冷循环可概括为四个过程① 蒸发过程4-1低温低压的液体制冷剂从冷库中以汽化潜热方式吸收被冷 却物热量后,变成低温低压的制冷剂蒸气② 压缩过程1-2 为了维持一定的蒸发温度,制冷剂蒸气必须不断地从蒸发 器引出,从蒸发器出来的制冷剂蒸气被压缩机吸入并被压缩成高压气体,且由于 在压缩过程中,压缩机要消耗一定的机械功,机械能又在此过程中转换为热能, 所以制冷剂蒸气的温度有所升高,制冷剂蒸气呈过热状态。
③ 冷凝过程2-3从制冷压缩机排出的高温高压过热的制冷剂蒸气,进入冷凝 器后受到冷却物(如冷却水、空气等)的冷却而变为液体④ 节流过程3-4从冷凝器出来的制冷剂液体经过降压设备(如节流阀、膨胀 阀等)减压到蒸发压力节流后的制冷剂温度也下降到蒸发温度,并产生部分闪 蒸气体节流后的气液混合物进入蒸发器进行蒸发过程上述四个过程依次不断进行循环,从而达到连续制冷的目的3・1・2单级压缩式制冷循环在压-焓图上的表示单级压缩式制冷循环主要由压缩机、冷凝器、节流装置和蒸发器四大件所组 成,这四大件由管道连接起来,便构成了一个最简单的制冷系统(如图3-1所示)单级蒸气压缩式制冷理论循环的假设条件是:① 压缩过程1-2是绝热压缩过程,前后熵值不变;② 不考虑制冷剂在流动时摩擦、阻力等损失,即制冷剂在流经冷凝器、蒸发 器及连接管道中的压力保持不变,冷凝压力pk保持不变;蒸发压力p0不变;③ 节流过程为绝热过程,液态制冷剂的节流前后恰值不变;该制冷系统运行状态则可在压一恰图上绘制和表示出来,如图3-2所示其 中各点表示的位置是:0点——蒸发器出口;1点一一压缩机吸气口;2点——压缩机排气口;5点——节流装置入口;6点 蒸发器入口。
国3-2 您緻轉汽压缩式制厝理论範环图中各线段的意义如下6-0段:等温等压吸热汽化过程(蒸发过程)压力P0为蒸发压力,温度t0 为蒸发温度6-0区间,P0与t0相对应两点间焓值之差就是单位工质的制冷量0-1 段:压力不变情况下的吸气过热过程在蒸发器出口段至压缩机入口段 间的管道由于吸收外界环境的热量,温度升高,而压力不变1- 2 段:等熵压缩过程在压缩过程中,气体的温度、压力及焓值升高,比 体积减小,熵值不变 h: -九,就是压缩机械功2- 3段:等压放热过程高压(冷凝压力)条件下,制冷剂气体放出显热, 由排气温度t2:降至冷凝温度鼻温度下降,状态授变,仍为气体3- 4段:凝结过程在冷凝压力pk下,制冷剂放出潜热而由气态液化为液态, 但温度没变,仍是冷凝温度 tk4- 5段:过冷过程在冷凝压力pk下,制冷剂液体继续散热,即向外放出显 热5- 6段:等焓节流过程制冷剂通过节流装置,由高压pk降到低压P0,温度 由过冷温度t5降至蒸发温度t0;状态由过冷液体变为气液共存状态h0、h3分别是压力p0、pk下干饱和蒸气的焓,h4是压力pk下饱和液体的焓, 皆可由饱和蒸气表查得,h2可根据pk和(S2=S])由过热蒸气表确定,h5、h]分别根 据过冷度和过热度确定。
蒸气压缩制冷循环0-1-2-3-4-5-6-0在压焓图中的表示如 图3-2 所示因为蒸气压缩制冷循环的吸热量、放热量以及所需功量皆可用工质 在各状态点的焓差来表示所以制冷量、冷凝放热量以及压缩所需的功都可以用 图中线段的长度表示3.1.3单级蒸气压缩式制冷理论循环的热力计算单级蒸气压缩式制冷理论循环在压焓图上表示如图 3-2所示在压焓图上表 示单级蒸气压缩式制冷循环的热力参数有:① 单位质量制冷量(简称单位制冷量)1kg制冷剂在蒸发器内所吸收的热 量称为单位制冷量,用符号q0表示,单位kJ/kg在压焓图3-2中,可用点 6和点 0两点的焓差值表示,即q0 =h0 -h6 =h0 -5 (kJ/kg) (3-1)② 单位压缩功 压缩机绝热压缩lkg制冷剂所消耗的功称为单位压缩功,用 符号w0表示,单位kJ/kg在图中用点2和点1两点的焓差表示,即w0 =h2 -h1 (kJ/kg) (3-2)③ 单位冷凝热负荷 lkg 制冷剂在冷凝器中放出的热量称为单位冷凝热负 荷,用符号qk表示,单位是kJ/kg,在图中,可用点2和点5的焓差表示,即qk =h2 -h5 (kJ/kg) (3-3)④ 单位容积制冷量1 m3制冷剂在蒸发器所吸收的热量称单位容积制冷量, 用符号qv表示,单位是kJ/m3。
它可以很方便地从q0换算出来,即qv= q0 /V] 一(h0 -h5)/V1 (kJ/ m3) (3-4)式中v]——吸气状态时制冷剂蒸气的比体积,m3 /kg⑤ 循环的制冷系数£ = q0/( q1-q2) = (h0-h6)/[(h2-h5)-(h1-h6)] = (h0-h6)/(h2-h1) (3-5)【例题3-1】某压缩制冷设备用氨作制冷剂已知氨的蒸发温度为10°C,冷 凝温度为38C,压缩机入口是干饱和氨蒸气,要求制冷量为lOOkW,试计算制 冷剂流量、压缩机消耗的功率和制冷系数解 根据题意t1=-10C,t3 =38C由氨的lgp-h图(见附录图2)查出各状态 点的参数为h1 =1430kJ/kg p1 =0. 29MPah2=1670kJ/kg p2 =1. 5MPah4 =h3 =350kJ/kg① 制冷剂流量q0=h1 -h4=(1430-350) kJ/kg=1080kJ/kg氨的质量流量为m=100/1080=0. 0926kg/s② 压缩机消耗的功率w0 =h2 -h1 =1670-1430=240kJ/kgP=mw0 =0. 0926x240=22. 22kW③ 制冷系数£ = q0/ w0=1028/240=4.53.1.4单级蒸气压缩式制冷实际循环 实际压缩过程与理论循环过程存在很大区别,主要表现在以下几方面: ①压缩过程不是等熵过程;② 实际节流过程中由于与外界有热交换,所以不是绝热节流,而节流后焓值是增大的;③ 制冷剂在蒸发器与冷凝器内传热过程,由于压力变化,制冷剂的温度是渐变的;④ 制冷剂流经阀门、管道和设备时因有阻力存在,为使循环得以实现,故使 压缩机的排气压力增高,而吸气压力降低;⑤ 在吸气过程中由于有热交换,肯定有一定的有害过热。
由于实际压缩循环与理论压缩循环存在着多方面差别,所以单级压缩制冷机的实际循环的单位压缩功增大,单位制冷量减少,制冷系数低于理论循环由于实际过程比较复杂,存在机械摩擦、阻力及热交换等,很难将实际循环 过程表示在 lgp-h 图上在工程计算时,通常是先按理论循环计算,然后用各种 系数进行修正3.1.5蒸气压缩式热泵循环热泵装置与制冷装置的工作原理没有什么差别,只是二者的工作目的不同, 制冷装置是为了制冷,而热泵装置则是为了供热如果将图3-3 中的冷凝器放在 室内,则当上述装置工作时,就可以从低温环境中吸取热量并释放到室内来,用 于取暖原则上,可以使一套设备具备制冷和供热两种功能如图3-3 所示,如 果用一只四通换向阀 A 来控制改变制冷工质在装置中的流向,就可以达到夏季 对室内制冷、冬季对室内供热的目的有些国家(如美国和加拿大)早已将这种 采暖与制冷兼用装置用于火车车厢和远洋客货轮的空调,以适应长途旅行运输时 各地区气候上的变化a)覆唯制挣储环 冬辜热衆號环图3 3 制持£热采阴用装就示意图A■—四通换向阀、E-毛细方进越置壬匕一压鼎机热泵的经济性指标是供热系数s',它等于制冷剂在冷凝器中放出的热量q1 与压缩机消耗的功w之比,即s'=q1/wo由于q1 =w+q2,所以热泵的供热系数恒大于1,它优于其他供暖装置(如电 加热器等)之处,就在于消耗同样多的机械功对室内供暖,可比用其他方法得到 更多的热量,即除了由机械功所转换的热量外,还包括制冷剂在蒸发器中所吸收 的热量。
热泵装置还可以将大量较低品位(即较低温度)的热能提升为较高品位(即 较高温度)的热能,以满足生产上的需要另外,采用热泵供热取代锅炉供热还 有利于保护环境不受污染但是,热泵的使用受到其他条件的限制,例如,我国 东北地区冬季室外温度在-20〜-30°C或更低,用热泵供热就很不经济,并且由于 室内外温差太大,热泵的供热系数将很低,不利于节能;又例如对工业欠发达的 国家或地区,热泵装置的造价往往比其他采暖设备高出很多,这也影响了热泵的 使用与推广3.2双级蒸气压缩式制冷循环3.2.1双级蒸气压缩式制冷理论循环单级制冷压缩机若要制取较低温度时,蒸发温度就很低,相应的蒸发压力就 很低,造成制冷机的压缩比(冷凝压力与蒸发压力之间绝对压力的比值)显著增 大当压力比增大到一定程度时,单机制冷压缩机就不能正常工作这是因为:① 压缩比增大,压缩机的输气量减少,使制冷量下降,② 压缩比增大,使压缩机的排气温度升高,汽缸壁温度上升,影响润滑条件,甚至会出现润滑油的碳化等不正常现象;③ 压缩比增大,液态制冷剂节流所引起的损失增大,即节流后产生的闪蒸气 体增多,使制冷系数降低因此,当需制取-25°C以下低温时一般采用双级压缩。
两级压缩制冷的压缩过程分两个阶段进行:来自蒸发器的制冷剂蒸气先在低 压压缩机中压缩到中间压力;经过中间冷却,然后再进入高压压缩机压缩到冷凝 压力两级压缩制冷循环,由于节流级数以及液体和蒸气冷却方式的不同,因而 有不同的循环形式例如,有两级节流和一级节流循环,中间完全冷却和中间不完全冷却循环等 实际应用的大都是一级节流循环两级压缩制冷都采用中间冷却经过中间冷却 后,高压级的排气温度就不致过高两级压缩制冷机的中间冷却方式是随制冷剂 的种类不同而有所不同对于氨,通常是让低压级的排气冷却到中间压力下的饱 和温度,称为中间完全冷却;对于氟里昂,则是让低压级的排气与中间冷却器中 蒸发的蒸气相汇合,称为中间不完全冷却3.2.2两级压缩氨制冷循环与系统组成两级氨压缩制冷机中,大多数是应用一级节流中间完全冷却循环该循环的 系统如图3-4所示图34 —级节就中间完全搀却期级压错制冷循环系统图人一低压压邹电“ u—髙压压晞枫*匕一挣駐器】r>一再拎撷耦: E—屡眼器:F中间拎却SU Ck II—布放.阀:1一劳通阀牌来自蒸发器E的低压氨蒸气,首先在低压压缩机A中被压缩到中间压力pz, 排入到中间冷却器F中,被其中的氨冷却到中间压力下的饱和温度tz,再进入高 压压缩机B中继续被压缩到冷凝压力pk,然后进入冷凝器中被冷凝成液体。
由冷凝器C引出的氨液,经过再冷却器D进步降低温度,然后分成两路:一路经节流阀G管内的高压氨液,中间冷却器中蒸发出来的氨图『5 —级办流中间完全冷却 闊圾宦缩凰制冷的ph图降压到中间压力pz,进入中间冷却器F 中, 利用它的蒸发来冷却低压压缩机的排气和盘 蒸气(中间压力pz下的饱和蒸气),随同低压 压缩机的排气(降温到中间压力下的饱和温 度)一起进入高压压缩机中被压缩,另一路氨 液在中间冷却器F的盘管内被冷却后流经节流阀H节流到蒸发压力P0,再进入 蒸发器E中进行蒸发制冷进入蒸发器的这一部分氨液,在节流以前,首先进 入中间冷却器冷却,这样可以减少节流损失,从而使单位制冷量增大如果高压 氨液不需要在盘管内冷却,可让高压氨液经旁通阀I流过,直接经节流阀H进入 蒸发器图3-5为该循环的p-h图图中1-2为氨蒸气在低压压缩机中的压缩过程;2-3为低压压缩机的排气在中间冷却器中的冷却过程,3-6为制冷剂蒸气在高压 压缩机中的压缩过程;6-7-8为氨蒸气在冷凝器中的冷却和冷凝过程,8-9为氨液 的过冷过程以后氨液分为两路:9--10为氨液进人中间冷却器的〜路,在节流 阀G中的节流过程,10-3为进入中间冷却器的氨液,在其中的蒸发吸热过程;9-4为另〜路进入蒸发器的氨液,在中间冷却器盘管内的冷却过程,4-5为这部 分氨液在节流阀H中的节流过程,5-1为低压氨液在蒸发器中的吸热气化过程。
圏自&两坡压缩韓坦昂制拧猫环原则性搔统图 片一低压压蜥机:B-ffi压压编甲h C 冷凝牖;Ci藏度瞬;E--节泄阀:F-屮间附却:(Sl由于在中间冷却器 中的盘管具有端部传热 温差,高压液体在其中 不可能被冷却到中间温 度tz,而是比中间温度高 出一个温差At通常At =3 〜5 °C在以氟里昂为制 冷剂的两级压缩制冷装 置中,大都采用一级节流中间不完全冷却的两级压缩循环其原则性系统图如图 3-6 所示这种循环与两级压缩氨制冷循环的主要区别是:低压压缩机的排气不 在中间冷却器中冷却,而是与中间冷却器中产生的饱和蒸气在管路中混合后进入 高压压缩机因此,高压压缩机吸入的不是中间压力下的饱和蒸气,而是过热蒸 气因而该循环中的中间冷却器结构也就比较简单。