文档详情

大功率可控整流器设计

沈***
实名认证
店铺
DOC
1.13MB
约21页
文档ID:155682371
大功率可控整流器设计_第1页
1/21

武汉理工大学《电力电子技术》课程设计说明书目录1设计任务及要求 21.1 初始条件 21.2 要求完成的主要任务 22 变流器主电路设计与原理说明 32.1 主电路图的设计 32.2 主电路原理 33 触发电路设计 83.1 触发电路选择 83.2 触发电路 93.3 触发电路的定相 134 保护电路的设计 154.1 过电流保护 154.2 过电压保护 165 参数的设定和计算 186 应用举例 196.1 作为蓄电池充电器 196.2 在温度控制上的应用 197 心得小结 20参考文献 21大功率可控整流器的设计 1设计任务及要求1.1 初始条件1.220V交流供电电源,整流变压器(六相绕组),晶闸管若干只;2.各种电阻和电感,快速熔断器FU,电容C1.2 要求完成的主要任务1.变流器主电路设计,原理说明;2. 触发电路设计,每个开关期间触发次序与相位分析;3. 保护电路设计,过电流保护,过电压保护原理分析;4. 参数设定和计算(包括触发角的选择,输出平均电流,输出平均电压,输出有功功率计算,输出波形分析);5.应用举例;6.心得小结212 变流器主电路设计与原理说明2.1 主电路图的设计在电解电镀等工业设计应用中,经常需要大功率的可调直流电源。

如果采用三相桥式电路,整流器件的数量很多,还有两个管压降损耗,降低了效率在这种情况下,可采用带平衡电抗器的双反星形可控整流电路,如图1所示该电路课简称双反星形电路图1 带平衡电抗器的双反星形可控整流电路2.2 主电路原理整流变压器二次侧为星型接法的两个绕组,a与a’、b与b’、c与c’接在三相变压器的三个铁芯柱上,且匝数相同但同名端位置相反,使Ua与Ua’、Ub与Ub’、Uc与Uc’的电压大小相等、相位差180度两个绕阻分别接成两组三相半波共阴极接法的整流电路,通过平衡电抗器Lp并联起来变压器二次侧两绕组的极性相反可消除铁芯的直流磁化平衡电抗器Lp是从中心抽头,左右两部分绕在同一铁芯上,匝数相等,绕向相同,用来保证两组三相半波整流电路能同时并联导通,每组承担一半负载因此,与三相桥式电路相比,在采用相同晶闸管的条件下,双反星形电路的输出电流可大一倍当两组三相半波的控制角 α=0º 时,两相整流电压、电流的波形如图2所示图2 双反星形电路, α=0º 时两组整流电压、电流波形 在上图中,两组的相电压互差180º,因而相电流亦互差180º其幅值相等,都是Id/2以a相而言,相电流ia与ia,出现的时刻虽不同,但他们的平均值都是Id/6。

因为平均电流相等而绕组的极性相反,所以直流安匝互相抵消因此本电路的利用绕组的极性相反来消除直流磁通势的在这种并联电路中,在两个星形的中点间接有带中间抽头的平衡电抗器,这事因为两个直流电源并联运行时,只有当两个电源的电压平均值和瞬时值均相等时,才能是负载电流平均分配在双反星形电路中,虽然两组整流电压的平均值Ud1和Ud2是相等的,但是它们的脉动波相差60º,它们的瞬时值是不同的,如图3a所示现在把六个晶闸管的阴极连接在一起,因而两个星形的中点n1和n2间的电压便等于ud1和ud2之差其波形是三倍频的近似三角波,如图3b所示这个电压加在平衡电抗器Lp上,产生电流ip,它通过两组星形自成回路,不流到负载中去,称为环流或平衡电流考虑到ip后,每组三相半波承担的电流分别为Id/2±ip为了使两组电流尽可能平均分配,一般使Lp值足够大,以便限制环流在其负载额定电流的1%~2%以内图3 平衡电抗器作用下输出电压的波形和平衡电抗器上电压的波形 在图1所示的双反星形电路中,如不接平衡电抗器,即成为六相半波整流器电路,在任一瞬间只能有一个晶闸管导电,其余五个晶闸管均承受反压二阻断,每个管子的最大导通角为60º,每个管子的平均电流为Id/6。

当α=0时,六相半波整流电路的Ud为1.35U2,比三相半波是的1.17U2略大些,其波形如图3a的包络线所示,由于六相半波整流电路因晶闸管导电时间段,变压器利用率低,估计少采用可见,双反星形与六相半波电路的区别在于有无平衡电抗器以下分析由于平衡电抗器的作用,使得两组三相半波整流电路同时导电的原理在图3a中取任一瞬间如ωt1,这时ub'及ua均为正值,然而ub'大于ua,如果两组三相半波整流电路中点n1和n2直接相连,则必然只有b'相的晶闸管能导电接了平衡电抗器后,n1、n2间的电位差加在Lp的两端,它补偿了ub'和ua的电动势差,使得ub'和ua相的晶闸管能同时导电,如题4所示由于在ωt1时电压ub'比ua高,VT6导通,此电流在流经Lp时,Lp上要感应一电动势up,它的方向是要阻止电流增大可以导出平衡电抗器两端电压和整流输出电压的数学表达式如下: (1) (2)虽然ub'>ua,导致ud1ub',电流才从VT6换至VT2。

此时变成VT1、VT2同时导电每隔60º有一个晶闸管换相每一组中的每一个晶闸管仍按三相半波的导电规律而各轮流导电120º图4 α取不同值时输出电压波形 α=30º、α=60º和α=90º时输出电压波形如图4所示从图中可以看出,双反星形电路的输出电压波形与三相半波电路比较,脉动程度减小了,脉动频率加大一倍,f=300Hz在电感负载情况下,当α=90º时,输出电压波形正负面积相等,Ud=0,因而要求的移相范围为90º如果是电阻负载,则ud波形不应出现负值,仅保留波形中正的部分同样可以得出,当α=120º时,Ud=0,因而电阻负载要求的移相范围为120º双反星形电路是两组三相半波电路的并联,所以整流电压平均值与三相半波整流电路的整流电压平均值相等,在不同控制角α时 Ud=1.17U2cosα比较双反星形电路与三相桥式电路可得:三相桥式电路是两组三相半波电路串联,而双反星形电路是两组三相半波电路并联,且后者需用平衡电抗器;当变压器二次侧电压有效值U2相等时,双反星形电路的整流电压平均值Ud是三相桥式电路的1/2,而整流电流平均值Id是三相桥式电路的两倍;在两种电路中,晶闸管的导通及触发脉冲的分配关系是一样的,整流电压ud和整流电流id的波形形状一样。

3 触发电路设计3.1 触发电路选择变流电路的功能通常是依靠电力半导体器件的可控性实现的,用于为电力半导体器件提供驱动信号的电路称为驱动电路晶闸管变流电路的功能是依靠晶闸管正相导通的可控性实现的经闸管由正向阻断状态转为正相导通状态时,必须在门极与阴极间施加足够的正向电压为了减少门极损耗并提高触发强度,触发电压常采用脉冲型信号一般晶闸管变流电路的控制框图如图5所示图中,同步电路获得与交流电源同步的正弦交流信号,并确定各元件自然换相点和移相范围;控制电路综合系统信息进行处理,产生和负载所需电压相适应的相位控制信号;移相控制电路接受相位控制信号,在移相范围内确定以自然换相点为计算起点的控制角,产生移相脉冲信号;驱动电路对该移相脉冲信号进行整形处理,产生所需幅值和宽度的触发脉冲信号 变流电路负 载电 源触发信号驱动电路同步电路反馈信号控制电路移 相控制电路相 位同步信号给 定信 号控制信号图5 晶闸管变流电路的控制框图 触发电路的类型很多,各有其特点在选择触发电路时,应根据系统的要求合理选择 对于三相桥式全控整流电路,在其合闸启动过程中或电流断续时,为确保电路在正常工作,需保证同时导通的两个晶闸管均有脉冲。

为此,可采用两种方法:一种是使脉冲宽度大于(一般取~),称为宽脉冲触发;另一种方法是,在触发某个晶闸管的同时,给前一个晶闸管补发脉冲,即用两个窄脉冲代替宽脉冲,两个窄脉冲的前沿相差,脉宽一般为~,称为双脉冲触发双脉冲电路较复杂,但要求的触发电路输出功率小宽脉冲触发电路虽可少输出一半脉冲,但为了不使脉冲变压饱和,需将铁心体积做得较大,绕组匝数较多,导致漏感增大,脉冲前沿不够陡因此,常用的是双脉冲触发3.2 触发电路TC787是采用独有的先进IC工艺技术,并参照国外最新集成移相触发集成电路而设计的单片集成电路它可单电源工作,亦可双电源工作,主要适用于三相晶闸管移相触发和三相功率晶体管脉宽调制电路,以构成多种交流调速和变流装置它们是目前国内市场上广泛流行的TCA785及KJ(或KC)系列移相触发集成电路的换代产品,与TCA785及KJ(或KC)系列集成电路相比,具有功耗小、功能强、输入阻抗高、抗干扰性能好、移相范围宽、外接元件少等优点,而且装调简便、使用可靠,只需一个这样的集成电路,就可完成3只TCA785与1只KJ041、1只KJ042或5只KJ(3只KJ004、1只KJ041、1只KJ042)(或KC)系列器件组合才能具有的三相移相功能。

因此,TC787/TC788可广泛应用于三相半控、三相全控、三相过零等电力电子、机电一体化产品的移相触发系统,从而取代TCA785、KJ004、KJ009、KJ041、KJ042等同类电路,为提高整机寿命、缩小体积、降低成本提供了一种新的、更加有效的途径 图6 TC787(或TC788)的引脚排列(引脚向下)一、各引脚的名称、功能及用法如下(1) 同步电压输入端:引脚1(Vc)、引脚2(Vb)及引脚18(Va)为三相同步输入电压连接端应用中,分别接经输入滤波后的同步电压,同步电压的峰值应不超过TC787/TC788的工作电源电压VDD2) 脉冲输出端:在半控单脉冲工作模式下,引脚8(C)、引脚10(B)、引脚12(A)分别为与三相同步电压正半周对应的同相触发脉冲输出端,而引脚7(-B)、引脚9(-A)、引脚11(-C)分别为与三相同步电压负半周对应的反相触发脉冲输出端当TC787或TC788被设置为全控双窄脉冲工作方式时,引脚8为与三相同步电压中C相正半周及B相负半周对应的两个脉冲输出端;引脚12为与三相同步电压中A相正半周及C相负半周对应的两个脉冲输出端;引脚11为与三相同步电压中C相负半周及B相正半周对应的两个脉冲输出端;引脚9为与三相同步电压中A相同步电压负半周及C相电压正半周对应的两个脉冲输出端;引脚7为与三相同步电压中B相电压负半周及A相电压正半周对应的两个脉冲输出端;引脚10为与三相同步电压中B相正半周及A相负半周对应的两个脉冲输出端。

应用中,均接脉冲功率放大环节的输入或脉冲变压器所驱动开关管的控制极3) 控制端:① 引脚4(Vr):移相控制电压输入端该端输入电压的高低,直接决定着TC787/TC788输出脉冲的移相范围,应用中接给定环节输出,其电压幅值最大为TC787/TC788的工作电源电压VDD② 引脚5(Pi):输出脉冲禁止端该端用来进行故障状态下封锁TC787/TC788的输出,高电平有效,应用中,接保护电路的输出③ 引脚6(Pc):TC787/TC788工作方式设置端当该端接高电平时,TC787/TC788输出双脉冲列;而当该端接低电平时,输出单脉冲列④ 引脚13(Cx):该端连接的电容Cx的容量决定着TC787或TC788输出脉冲的宽度,电容的容量越大,则脉冲宽度越宽⑤ 引脚14(Cb)、引脚15(Cc)、引脚16(Ca):对应三相同步电压的锯齿波电容连接端该端连接的电容值大小决定了移相锯齿波的斜率和幅值,应用中分别通过一个相同容量的电容接地4) 电源端TC787/TC788可单电源工作,亦可双电源工作单电源工作时引脚3(VSS)接地,而引脚17(VDD)允许施加的电压为8~18V双电源工作时,引脚3(VSS)接负电源,其允许施加的电压幅值为-4~-9V,引脚17(VDD)接正电源,允许施加的电压为+4~+9V。

二、内部结构及工作原理简介TC787/TC788的内部结构及工作原理框图如图2所示由图可知,在它们内部集成有三个过零和极性检测单元、三个锯齿波形成单元、三个比较器、一个脉冲发生器、一个抗干扰锁定电路、一个脉冲形成电路、一个脉冲分配及驱动电路它们的工作原理可简述为:经滤波后的三相同步电压通过过零和极性检测单元检测出零点和极性后,作为内部三个恒流源的控制信号三个恒流源输出的恒值电流给三个等值电容Ca、Cb、Cc恒流充电,形成良好的等斜率锯齿波锯齿波形成单元输出的锯齿波与移相控制电压Vr比较后取得交相点,该交相点经集成电路内部的抗干扰锁定电路锁定,保证交相唯一而稳定,使交相点以后的锯齿波或移相电压的波动不影响输出该交相信号与脉冲发生器输出的脉冲(对TC787为调制脉冲,对TC788为方波)信号经脉冲形成电路处理后变为与三相输入同步信号相位对应且与移相电压大小适应的脉冲信号送到脉冲分配及驱动电路假设系统未发生过电流、过电压或其它非正常情况,则引脚5禁止端的信号无效,此时脉冲分配电路根据用户在引脚6设定的状态完成双脉冲(引脚6为高电平)或单脉冲(引脚6为低电平)的分配功能,并经输出驱动电路功率放大后输出,一旦系统发生过电流、过电压或其它非正常情况,则引脚5禁止信号有效,脉冲分配和驱动电路内部的逻辑电路动作,封锁脉冲输出,确保集成电路的6个引脚12、11、10、9、8、7输出全为低电平。

图7 TC787原理框图 三、基本设计特点1.主要设计特点(1) TC787适用于主功率器件是晶闸管的三相全控桥或其他拓扑结构电路的系统中作为晶闸管的移相触发电路而TC788适用于以功率晶体管(GTR)或绝缘栅双极晶体管(IGBT)为功率单元的三相全桥或其他拓扑结构电路的系统中作为脉宽调制波产生电路,且任一种芯片均可同时产生六路相序互差60°的输出脉冲2) TC787/TC788在单、双电源下均可工作,使其适用电源的范围较广泛,它们输出三相触发脉冲的触发控制角可在0~180°范围内连续同步改变它们对零点的识别非常可靠,使它们可方便地用作过零开关,同时器件内部设计有移相控制电压与同步锯齿波电压交点(交相)的锁定电路,抗干扰能力极强电路自身具有输出禁止端,使用户可在过电流、过电压时进行保护,保证系统安全 (3) TC787/TC788分别具有A型和B型器件,使用户可方便地根据自己应用系统所需要的工作频率来选择(工频时选A型器件,中频100~400Hz时选B型器件)同时,TC787输出为脉冲列,适用于触发晶闸管及感性负载;TC788输出为方波,适用于驱动晶体管。

因两种集成电路引脚完全相同,故增加了用户控制用印制电路板的通用性,使同一印制电路板只需要互换集成电路便可用于控制晶闸管或晶体管4) TC787/TC788可方便地通过改变引脚6的电平高低,来设置其输出为双脉冲列还是单脉冲列图8 整流电路的集成触发电路3.3 触发电路的定相向晶闸管整流电路供电的交流侧电源通常来自电网,电网的频率不是固定不变的,而是会在允许内有一定的波动触发电路除了应当保证工作频率与主电路交流电源的频图9 主电路电压与同步电压关系示意图率一致外,还应保证每个晶闸管触发脉冲与施加于晶闸管的交流电压保持固定、正确的相位关系为保证触发电路和主电路频率一致,利用一个同步变压器,将一次侧接入为主电路供电的电网,由其二次侧提供同步电压信号,这样,由同步电压决定的触发脉冲频率与主电路晶闸管电压频率始终是一致的接下来就是触发电路的定相,即选择同步电压信号的相位,以保证触发脉冲相位正确触发电路的定相由多方面的因素确定,主要包括相控电路的主电路结构、触发电路结构等触发电路定相的关键是确定同步信号与晶闸管阳极电压的关系主电路电压与同步电压的关系如图6所示对于晶闸管VT1,其阳极与交流侧电压相接,可简单表示为VT1所接主电路电压为+,VT1的触发脉冲从 至的范围为~。

采用锯齿波同步的触发电路时,同步信号负半周的起点对应于锯齿波的起点,通常使锯齿波的上升段为,上升段起始的和终了的线性度不好,舍去不用,使用中间的锯齿波的中点与同步信号位置对应对于双反星形整流电路,使的触发角为当时为整流工作,时为逆变工作将确定为锯齿波的中点,锯齿波向前、向后各有的移相范围于是与同步电压的对应,也就是与同步电压的对应对于其它五个晶闸管,也存在同样的对应关系,即同步电压应滞后于主电路电压对于VT4、VT6和VT2,它们的电路电压分别为ua'、ub'和uc'它们的相电压分别与ua、ub和uc相差180º以上分析了同步电压与主电路电压的关系,一旦确定了整流变压器和同步变压器的接法,即可选定每一个晶闸管的同步电压信号图10给出了变压器接法的一种情况及相应的矢量图,其中主电路整流变压器为Dy11联结,同步变压器为Dy5y11联结,这时,同步电压应选取的结果如表1所示图10 同步变压器和整流变压器的接法及矢量图表1 各晶闸管的同步电压(采用图8变压器接法时)晶闸管VT1VT2VT3VT4VT5VT6主电路电压uauc'ubua'ucub'同步电压-usausc-usbusa-uscusb为防止电网电压波形畸变对触发电路产生干扰,可对同步电压进行R-C滤波,当R-C滤波滞后角为时,同步电压选取结果如表2所示。

表2 各晶闸管的同步电压(有R-C滤波波滞后)晶闸管VT1VT2VT3VT4VT5VT6主电路电压uauc'ubua'ucub'同步电压usb-usausc-usbusa-usc当变流形式不同,或整流变压器、同步变压器接法不同时,可参照上述例子确定同步电压信号4 保护电路的设计4.1 过电流保护电力电子电路运行不正常或者发生故障时,可能会发生过电流过电流分过载和短路两种情况图9给出了各种过电流保护措施及其配置位置,其中快速熔断器、直流快速断路器和过电流继电器是较为常用的措施一般电力电子装置均同时采用几种过电流保护措施,以提高保护的可靠性和合理性在选择各种保护措施时应注意相互协调通常,电子电路作为第一保护措施,快速熔断器仅作为短路时的部分区段的保护,直流民快速断路器整定在电子电路动作之后实现保护,过电流继电器整定在过载时动作 图11 过电流保护措施及配置位置采用快速熔断器(简称快熔)是电力电子装置中最有效、应用最广的一种过电流保护措施在选择快熔时应考虑:1) 电等级应根据熔断后快熔实际承受的电压来确定2) 电流容量应按其在主电路中的接入方式和主电路连接形式确定。

快熔一般与电力半导体器件串联连接,在小容量装置中也可串接于阀侧交流母线或直流母线中快熔的值应小于被保护器件的允许值3) 为保证熔体在正常过载的情况下不熔化,应考虑其时间-电流特性快熔对器件的保护方式可分为全保护和短路保护两种全保护是指不论过载还是短路均由快熔进行保护,此方式只适用于小功率装置或器件使用裕度较大的场合短路保护方式是指快熔只在短路电流较大的区域内起保护作用,此方式下需与其他过电流保护措施相配合快熔电流容量的具体选择方法可参考有关的工程手册对一些重要的且易发生短路的晶闸管设备,或者工作频率较高、很难用快速熔断器保护的全控型器件,需要采用电子电路进行过电流保护4.2 过电压保护电力电子装置可能的过电压分为外因过电压和内因过电压外因过电压主要来自雷击和系统中的操作过程等,包括:图12 过电压抑制措施及配置位置F—避雷器 D—变压器静电屏蔽层 C—静电感应过电压抑制电容RC1—阀侧浪涌过电压抑制用RC电路 RC2—阀侧浪涌过电压抑制用反向阻断式RC电路RV—压敏电阻过电压抑制器 RC3—阀器件换相过电压抑制用RC电路RC4—直流侧RC抑制电路 RCD—阀器件关断过电压抑制用RCD电路1) 操作过电压:由分闸、合闸等开关操作引起;2) 雷击过电压:由雷击引起。

内因过电压主要来自电力电子装置内部器件的开关过程,包括:1)换相过电压:晶闸管或与全控型器件反并联的二极管在换相结束后不能立刻恢复阻断,因而有较大的反向电流流过,当恢复了阻断能力时,该反向电流急剧减小,会由线路电感在器件两端感应出过电压;2)关断过电压:全控型器件关断时,正向电流迅速降低而由线路电感在器件两端感应出的过电压图13 RC过电压抑制电路连接方式 a) 单相b) 三相图14 反向阻断式过电压抑制用RC电路电力电子装置可视具体情况只采用其中的几种其中RC3和RCD为抑制内因过电压的措施,属于缓冲电路范畴外因过电压抑制措施中,RC过电压抑制电路最为常见,典型联结方式见图11RC过电压抑制电路可接于供电变压器的两侧(供电网一侧称网侧,电力电子电路一侧称阀侧),或电力电子电路的直流侧大容量电力电子装置可采用图12所示的反向阻断式RC电路5 参数的设定和计算 双反星形电路是两组三相半波电路的并联,所以整流电压平均值与三相半波整流电路的整流电压平均值相等,在不同控制角α时输出平均电压为: Ud=1.17U2cosα (3) 将α=30º和U2=220V带入上式计算得 Ud=223V 双反星形电路是两组三相半波电路并联,每组三相半波整流电流是负载电流的1/2,所以负载电流为: Id=2Ud/R (4) 取R=10Ω,Id=44.6A 电流有效值与直流电流的关系为:I=Id (5)将电流波形分解为傅里叶级数得,以a相电流为例,将电流负、正两半波得中点作为时间零点,则有: (6)由式(6)得电流基波和各次谐波有效值分别为 (7)由式(5)和式(7)可得基波因数为 (8)由于电流基波与电压的相位差仍为α,故位移因数为 (9)由此算出功率因数为 (10)把代入计算得 (11) 整流电路的视在功率为:S=UdId=223×44.6=9945.8W (12) 有功功率为:P=Sλ=7956.64W (13)6 应用举例6.1 作为蓄电池充电器本设计也可作为对蓄电池充电或一般工业用的直流稳压或稳流电源为适应蓄电池的不同组合和使用特点,产品的品种参数较多,选择使用比较方便。

晶闸管整流设备一般具有较优良的稳压稳流特性,可实现恒流和恒压充电电站(厂)使用的充电设备,输出电压一般较高,容量较大有一些产品具有逆变功能(可在两个象限工作),在进行蓄电池放电实验时,可直接将放电电能回馈电网无需专门设置放电负载而快速充电设备是专门对充电时间有特殊要求用户设计的,一般有较完整的控制性能6.2 在温度控制上的应用在抗生素生产企业电加热设备较为广泛的应用于生产过程中,在发酵车间菌种恒温室用电加热器来调节菌种室温度,以利于菌种的生长;在提炼车间的干燥设备用电加热器控制通风温度对药品半成品进行干燥除湿,以保证药品质量;在分装车间的隧道烘箱用电加热管加热,也是为了保证药品的质量在上述生产过程中,生产工艺的稳定、产品质量的提高以及国家药品生产管理规范的有关规定,都对其温度控制的精度和稳定性提出了严格的要求用常规的温度控制仪表组成的温度控制系统,由于温度参数的滞后性和电加热系统的非线性,使温度控制很难达到较高的精度,而基于模糊控制理论的智能型晶闸管调功器则能够消除调节死区,克服系统的滞后,控制系统的超调或欠调,成功地解决了控制精度的问题在农业生产中,一些农作物需要控制在一定的温度下,采用直流整流器对其进行控制。

可以达到恒温,恒压7 心得小结通过本次电力电子技术课程设计,我加深了对课本专业知识的理解,平常都是理论知识的学习,在此次课程设计中,真正做到了自己查阅资料、自己解决问题,对触发电路、保护电路等都有了更深刻的理解在设计的过程中,当然也遇到了很多的困难,能过讨论和查阅资料,逐一解决了这些问题通过解决课程设计的这些难点,与其说是增加了的知识,不如说培养了我们一个积极的心态当遇到困难时,端正态度,认真地查资料,跟老师和同学讨论,以一个最积极的充满信心的态度,最终总会解决问题通过这次课程设计,使我懂得了只有课堂知识是远远不够的,只有把所学的知识综合起来,从理论中得出结论,提高自己独立思考的能力,才会对自己的将来有帮助在设计的过程中发现了自己的不足之处,对以前所学过的知识理解得不够深刻,掌握得不够牢固,通过这次课程设计,把以前所学过的知识重新温故,巩固了所学的知识本设计过程中用到的晶闸管触发电路的各个环节,以及触发电路中参数的计算来源并不是很清楚,只是根据以往的经验值所选用的,应用起来不是很清楚再就是在所用器件的选择上,根据设计所给的参数值计算出的理论值和在实际应用当中考虑到诸多因素的实际值相差很大。

本设计中所选用的器件及主电路的选择是考虑到经济性而设计的,因此器件在各个方面还有待于进一步改进参考文献[1] 王兆安,刘进军 《电力电子技术》 机械工业出版社,2009[2] 黄俊,秦祖荫 《电力电子自关断器件及电路》 机械工业出版社,1991[3] 王维平 《现代电力电子技术及应用》 东南大学出版社,1999 [4] 叶斌 《电力电子应用技术及装置》 铁道出版社,1999[5] 马建国 《电子系统设计》 高等教育出版社,2004 。

下载提示
相关文档
正为您匹配相似的精品文档