文档详情

人教版九年级上学期数学圆单元测试题1

沈***
实名认证
店铺
DOC
321.50KB
约6页
文档ID:135752875
人教版九年级上学期数学圆单元测试题1_第1页
1/6

人教版九年级上学期数学《圆》单元测试题一、选择题(本大题共30小题,每小题1分,共计30分)1.下列命题:①长度相等的弧是等弧 ②任意三点确定一个圆 ③相等的圆心角所对的弦相等 ④外心在三角形的一条边上的三角形是直角三角形,其中真命题共有( )A.0个     B.1个      C.2个      D.3个2.同一平面内两圆的半径是R和r,圆心距是d,若以R、r、d为边长,能围成一个三角形,则这两个圆的位置关系是( ) A.外离     B.相切     C.相交     D.内含3.如图,四边形ABCD内接于⊙O,若它的一个外角∠DCE=70°,则∠BOD=( )A.35°    B.70°    C.110°    D.140°                     第3题 第4题 第5题4.如图,⊙O的直径为10,弦AB的长为8,M是弦AB上的动点,则OM的长的取值范围( )A.3≤OM≤5     B.4≤OM≤5     C.3<OM<5     D.4<OM<55.如图,⊙O的直径AB与弦CD的延长线交于点E,若DE=OB, ∠AOC=84°,则∠E等于( )A.42 °     B.28°     C.21°     D.20°6.如图,△ABC内接于⊙O,AD⊥BC于点D,AD=2cm,AB=4cm,AC=3cm,则⊙O的直径是( )A.2cm     B.4cm     C.6cm     D.8cm 第6题 第7题 第10题7.如图,圆心角都是90°的扇形OAB与扇形OCD叠放在一起,OA=3,OC=1,分别连结AC、BD,则图中阴影部分的面积为( ) A.    B.     C.     D.8.已知⊙O1与⊙O2外切于点A,⊙O1的半径R=2,⊙O2的半径r=1,若半径为4的⊙C与⊙O1、⊙O2都相切,则满足条件的⊙C有( ) A.2个     B.4个     C.5个     D.6个9.设⊙O的半径为2,圆心O到直线的距离OP=m,且m使得关于x的方程有实数根,则直线与⊙O的位置关系为( ) A.相离或相切    B.相切或相交    C.相离或相交    D.无法确定10.如图,把直角△ABC的斜边AC放在定直线上,按顺时针的方向在直线上转动两次,使它转到△A2B2C2的位置,设AB=,BC=1,则顶点A运动到点A2的位置时,点A所经过的路线为( )A.    B.     C.     D.11.(成都)如图,小红同学要用纸板制作一个高4cm,底面周长是6πcm的圆锥形漏斗模型,若不计接缝和损耗,则她所需纸板的面积是( )A.12πcm2    B.15πcm2    C.18πcm2    D.24πcm2                 第11题 第12题 第13题12.如图,扇形OAB是一个圆锥的侧面展开图,若小正方形方格的边长为1,则这个圆锥的底面半径为( ) A.     B.     C.      D.13.如图是一个五环图案,它由五个圆组成.下排的两个圆的位置关系是( )A.内含     B.外切     C.相交    D.外离14.如图,AB、AC是⊙O的两条切线,B、C是切点,若∠A=70°,则∠BOC的度数为( )A.130°     B.120°     C.110°    D.100° 15.有4个命题:①直径相等的两个圆是等圆; ②长度相等的两条弧是等弧;③圆中最大的弧是过圆心的弧;④一条弦把圆分为两条弧,这两条弧不可能是等弧.其中真命题是( )A.①③      B.①③④      C.①④    D.①16.如图,点I为△ABC的内心,点O为△ABC的外心,∠O=140°,则∠I为( )A.140°     B.125°    C.130°     D.110°17.如图,等腰直角三角形AOB的面积为S1,以点O为圆心,OA为半径的弧与以AB为直径的半圆围成的图形的面积为S2,则S1与S2的关系是( ) A. S1>S2     B. S1<S2      C. S1=S2     D.S1≥S218.如果正多边形的一个外角等于60°,那么它的边数为( ) A. 4 B. 5 C. 6   D. 719.等边三角形的周长为18,则它的内切圆半径是( )A. 6      B. )3    C.     D.20.一个扇形的弧长为厘米,面积是厘米2,则扇形的圆心角是( )A. 120°    B. 150°     C. 210°     D. 240°21.两圆半径之比为2:3,当两圆内切时,圆心距是4厘米,当两圆外切时,圆心距为( )A. 5厘米     B. 11厘米     C. 14厘米    D. 20厘米22.一个圆锥的侧面积是底面积的2倍,则这个圆锥的侧面展开图的圆周角是( )A. 60°    B. 90°    C. 120°    D. 180°23.圆内接正五边形ABCDE中,对角线AC和BD相交于点P,则∠APB的度数是( )A.36°    B.60°     C.72°     D.108°24.如图所示,把边长为2的正方形ABCD的一边放在定直线上,按顺时针方向绕点D旋转到如图的位置,则点B运动到点B′所经过的路线长度为( )A.1    B.     C.    D. 第24题 第26题 第27题25.如果一个正三角形和一个正六边形面积相等,那么它们边长的比为( )A.6:1    B.    C.3:1    D.26.如图所示,圆锥的母线长是3,底面半径是1,A是底面圆周上一点,从点A出发绕侧面一周,再回到点A的最短的路线长是( ) A.   B.  C.    D.327.如图,在中,,.将其绕点顺时针旋转一周,则分别以为半径的圆形成一圆环.该圆环的面积为( )A.  B.   C.     D.28.如图,是等腰直角三角形,且.曲线…叫做“等腰直角三角形的渐开线”,其中,,,…的圆心依次按循环.如果,那么曲线和线段围成图形的面积为( )A.   B.   C.D. 第28题 第29题 第30题29.图中,EB为半圆O的直径,点A在EB的延长线上,AD切半圆O于点D,BC⊥AD于点C,AB=2,半圆O的半径为2,则BC的长为( )A.2    B.1     C.1.5     D.0.530.如图,在平面直角坐标系中,点P在第一象限,⊙P与轴相切于点Q,与轴交于M(0,2),N(0,8) 两点,则点P的坐标是( ) A.    B.     C.    D.二、填空题(本大题共30小题,每小2分,共计60分)31.某圆柱形网球筒,其底面直径是10cm,长为80cm,将七个这样的网球筒如图所示放置并包装侧面,则需________________的包装膜(不计接缝,取3).                   第31题 第32题32.如图,在“世界杯”足球比赛中,甲带球向对方球门PQ进攻,当他带球冲到A点时,同样乙已经助攻冲到B点.有两种射门方式:第一种是甲直接射门;第二种是甲将球传给乙,由乙射门.仅从射门角度考虑,应选择________种射门方式.33.如果圆的内接正六边形的边长为6cm,则其外接圆的半径为___________.34.如图,直角坐标系中一条圆弧经过网格点A、B、C,其中,B点坐标为(4,4),则该圆弧所在圆的圆心坐标为_____________.              35.如图,两条互相垂直的弦将⊙O分成四部分,相对的两部分面积之和分别记为S1、S2,若圆心到两弦的距离分别为2和3,则|S1-S2|=__________.36.如图,⊙O的直径CD垂直于弦EF,垂足为G,若∠EOD=40°,则∠DCF等于________度.                  第36题 第37题 第38题37.如图,A是半径为2的⊙O外一点,OA=4,AB是⊙O的切线,点B是切点,弦BC ∥OA,连结AC,则图中阴影部分的面积为_________.38.劳技课上,王芳制作了一个圆锥形纸帽,其尺寸如图.则将这个纸帽展开成扇形时的圆心角等于_______.39.如图,已知PA是⊙O的切线,切点为A,PA=3,∠APO=30°,那么OP=_______.                 第39题 第40题 第41题40.如图,某花园小区一圆形管道破裂,修理工准备更换一段新管道,现在量得污水水面宽度为80cm,水面到管道顶部距离为20cm,则修理工应准备内直径是________cm的管道.41.如图,为的直径,点在上,,则________.42.如图,在⊙O中,AB为⊙O 的直径,弦CD⊥AB,∠AOC=60°,则∠B=________.                  第42题 第47题 第48题43.已知⊙O1和⊙O2的半径分别为2和3,两圆相交于点A、B,且AB=2,则O1O2=______.44.已知四边形ABCD是⊙O的外切等腰梯形,其周长为20,则梯形的中位线长为_____.45.用铁皮制造一个圆柱形的油桶,上面有盖,它的高为80厘米,底面圆的直径为50厘米,那么这个油桶需要铁皮(不计接缝)_________厘米2(不取近似值).46.已知两圆的半径分别为3和7,圆心距为5,则这两个圆的公切线有_____条.47.如图,以AB为直径的⊙O与直线CD相切于点E,且AC⊥CD,BD⊥CD,AC=8cm,BD=2cm,则四边形ACDB的面积为______.48.如图,PA、PB、DE分别切⊙O于A、B、C,⊙O的半径长为6cm,PO=10cm,则△PDE的周长是______.49.一个正方形和一个正六边形的外接圆半径相等,则此正方形与正六边形的面积之比为_______.50.已知正六边形边长为a,则它的内切圆面积为_______.51.如图,有一个边长为2cm的正六边形,若要剪一张圆形纸片完全盖住这个图形,则这个圆形纸片的最小半径是________.                       第51题 第53题 52.如果一条弧长等于,它的半径是R,那么这条弧所对的圆心角度数为______,当圆心角增加30°时,这条弧长增加________.53.如图所示,OA=30B,则的长是的长的_____倍.54.母线长为,底面半径为r的圆锥的表面积=_______.55.已知扇形半径为2cm,面积是,扇形的圆心角为_____°,扇形的弧长是______cm.56.矩形ABCD的边AB=5cm,AD=8cm,以直线AD为轴旋转一周,所得圆柱体的表面积是__________.(用含的代数式表示)57.粮仓顶部是一个圆锥形,其底面周长为36m,母线长为8m,为防雨需在粮仓顶部铺上油毡,如果按用料的10%计接头的重合部分,那么这座粮仓实际需用________m2的油毡.58.如图,某机械传动装置静止状态时,连杆与点运动所形成的⊙O交于点,现测得,.⊙O半径,此时点到圆心的距离是______cm.         59.如图,是⊙O的直径,点在的延长线上,过点作⊙O的切线,切点为,若,则______.                   第59题 第60题60.如图,⊙O1和⊙O2相交于A,B,且AO1和AO2分别是两圆的切线,A为切点,若⊙O1的半径r1=3cm, ⊙O2的半径为r2=4cm,则弦AB=___cm.三、解答题(63~64题,每题2分,其他每题8分,共计60分)61.如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连结AC,过点D作DE⊥AC,垂足为E.(1)求证:AB=AC;(2)求证:DE为⊙O的切线;(3)若⊙O半径为5,∠BAC=60°,求DE的长.               62.如图所示,已知△ABC中,AC=BC=6,∠C=90°.O是AB的中点,⊙O与AC相切于点D、与BC相切于点E.设⊙O交OB于F,连DF并延长交CB的延长线于G.(1)∠BFG与∠BGF是否相等?为什么?(2)求由DG、GE和所围成的图形的面积(阴影部分).63.如图,以等腰三角形的一腰为直径的⊙O交底边于点,交于点,连结,并过点作,垂足为.根据以上条件写出三个正确结论(除外)是:(1)___________________________________________________________________________;(2)___________________________________________________________________________;(3)___________________________________________________________________________.                      64.如图,要在直径为50厘米的圆形木板上截出四个大小相同的圆形凳面.问怎样才能截出直径最大的凳面,最大直径是多少厘米?                      65.如图是一纸杯,它的母线AC和EF延长后形成的立体图形是圆锥,该圆锥的侧面展开图形是扇形OAB.经测量,纸杯上开口圆的直径是6cm,下底面直径为4cm,母线长为EF=8cm.求扇形OAB的圆心角及这个纸杯的表面积(面积计算结果用表示) .                    66.如图,在△ABC中,∠BCA =90°,以BC为直径的⊙O交AB于点P,Q是AC的中点.判断直线PQ与⊙O的位置关系,并说明理由.                     67.有这样一道习题:如图1,已知OA和OB是⊙O的半径,并且OA⊥OB,P是OA上任一点(不与O、A重合),BP的延长线交⊙O于Q,过Q点作⊙O的切线交OA的延长线于R.(1)证明:RP=RQ. (2)请探究下列变化:A、变化一:交换题设与结论.已知:如图1,OA和OB是⊙O的半径,并且OA⊥OB,P是OA上任一点(不与O、A重合),BP的延长线交⊙O于Q,R是OA的延长线上一点,且RP=RQ. 证明:RQ为⊙O的切线.  B、变化二:运动探求.(1)如图2,若OA向上平移,变化一中结论还成立吗?(只交待判断) 答:_________.(2)如图3,如果P在OA的延长线上时,BP交⊙O于Q,过点Q作⊙O的切线交OA的延长线于R,原题中的结论还成立吗?为什么?   68.如图,在平面直角坐标系中,矩形ABCO的面积为15,边OA比OC大2.E为BC的中点,以OE为直径的⊙O′交轴于D点,过点D作DF⊥AE于点F.(1)求OA、OC的长;   (2)求证:DF为⊙O′的切线;(3)小明在解答本题时,发现△AOE是等腰三角形.由此,他断定:“直线BC上一定存在除点E以外的点P,使△AOP也是等腰三角形,且点P一定在⊙O′外”.你同意他的看法吗?请充分说明理由.                 69.已知:如图(1),⊙O1与⊙O2相交于A、B两点,经过A点的直线分别交⊙O1、⊙O2于C、D两点(C、D不与B重合),连结BD,过点C作BD的平行线交⊙O1于点E,连BE.               (1)求证:BE是⊙O2的切线;(2)如图(2),若两圆圆心在公共弦AB的同侧,其他条件不变,判断BE和⊙O2的位置关系(不要求证明).6。

下载提示
相关文档
正为您匹配相似的精品文档