北师大版八年级下册数学期末测试卷(一)A卷题号一二三四五总分总分人分数B卷题号一二总分总分人分数全卷分为A卷和B卷,A卷满分100分,B卷满分50分;考试时间共120分钟A卷分为第Ⅰ卷和第Ⅱ卷,第Ⅰ卷为选择题,第Ⅱ卷为其它类型的题A卷(共100分)第Ⅰ卷(选择题,共30分)注意事项:1.第Ⅰ卷共2页,答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在试卷和答题卡上考试结束,监考人员将试卷和答题卡一并收回2.第Ⅰ卷全是选择题,各题均有四个选项,只有一项符合题目要求,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,不能答在试卷上请注意机读答题卡的横竖格式得 分评卷人一、选择题:(每小题3分,共30分)1、-3x<-1的解集是( ) A、x< B、x<- C、x> D、x>-2、下列从左到右的变形是分解因式的是( ) A、(x-4)(x+4)=x2-16 B、x2-y2+2=(x+y)(x-y)+2 C、2ab+2ac=2a(b+c) D、(x-1)(x-2)=(x-2)(x-1).3、下列命题是真命题的是( ) A、相等的角是对顶角 B、两直线被第三条直线所截,内错角相等 C、若 D、有一角对应相等的两个菱形相似4、分式,,的最简公分母是( ) A、(a-2ab+b)(a-b)(a+2ab+b) B、(a+b)(a-b)C、(a+b)(a-b)(a-b) D、5、人数相等的八(1)和八(2)两个班学生进行了一次数学测试,班级平均分和方差如下: 则成绩较为稳定的班级是( )A、八(1)班 B、八(2)班C、两个班成绩一样稳定 D、无法确定6、如图1,能使BF∥DG的条件是( ) A、∠1=∠3 B、∠2=∠4 C、∠2=∠3 D、∠1=∠47、如图2,四边形木框在灯泡发出的光照射下形成的影子是四边形,若,则四边形的面积∶四边形的面积为( )图1图2A、 B.C. D.8、如图3,A,B,C,D,E,G,H,M,N都是方格纸中的格点(即小正方形的顶点),要使与相似,则点F应是G,H,M,N四点中的( )A、H或M B、G或HC、M或N D、G或M图39、如图4,DE∥BC,则下列不成立的等式是( )A、 B、C、 D、图410、直线:与直线:在同一平面直角坐标系中的图象如图5所示,则关于的不等式的解为( )A、>-1 B、<-1C、<-2 D、无法确定图5得 分评卷人二、填空题:(共6小题,每题4分,共24分) 11、计算:(1)(-x)y=____________。
12、分解因式:a3b+2a2b2+ab3= 13、一组数据:1、2、4、3、2、4、2、5、6、1,它们的平均数为 ,众数为 ,中位数为 ;14、如图6,某航空公司托运行李的费用与托运行李的重量的关系为一次函数,由图可知行李的重量只要不超过________千克,就可以免费托运图615、如图7所示:∠A=50,∠B=30,∠BDC=110, 则∠C=______图716、一项工程,甲单独做5小时完成,甲、乙合做要2小时,那么乙单独做要_____小时得 分评卷人三、解答题: 17、(每小题6分,共18分)(1)解不等式组,并把解集在数轴上表示出来 ≥x;(2)解分式方程:(3)先化简,再求值:.其中m=5.18.(6分)如图8,是大众汽车的标志图案,其中蕴涵着许多几何知识.根据下面的条件完成证明.已知:如图8,,.(1)求证:;图8(2)若,求的度数.19、(6分)如图9,为了测量旗杆的高度,小王在离旗杆9米处的点C测得旗杆顶端A的仰角为50;小李从C点向后退了7米到D点(B、C、D在同一直线上),量得旗杆顶端A的仰角为40.根据这些数据,小王和小李能否求出旗杆的高度?若能,请写出求解过程;若不能,请说明理由. 图9 20、(7分)八年级某班进行小制作评比,作品上交时间为5月1日至30日,评委把同学上交作品的件数按5天一组分组统计绘制了频数直方图如图10。
已知从左到右各长方形的高的比为2:3:4:6:4:1,第三组的频数为12 (1)本次活动共有多少件作品参评? (2)哪组上交的作品数量最多?有多少件? (3)经过评比,第四组与第六组分别有10件与2件获奖,那么这两组中哪组的获奖率较高?图10 21、(9分)如图11,矩形ABCD中,AB=4,BC=6,M是BC的中点,DE⊥AM,E为垂足.(1)求△ABM的面积.(2)求DE的长.(3)求△ADE的面积.图11 B 卷 得 分评卷人一、填空题(每题4分,共24分)22、分式的值为0,则的值为( )23、若24、 是线段的黄金分割点,,则 .25、如图12,已知,且相似比为,则k= ,直线的图像必经过 象限.图12 26、观察下列等式:3941=402—12,4852=502-22,5664=602—42,6575=702-52,8397=902—72…,请你把发现的规律用字母m,n的代数式表示出来: 27、在方程组中,已知,,的取值范围是 。
得 分评卷人二、28、 (6分)如图13,点是不等边三角形的边上的一点,过点作一条直线,使它与另一边相交截得的三角形与相似,这样的直线可以作几条?为什么?图13 三、29、(本小题满分10分)某校初中三年级270名师生计划集体外出一日游,乘车往返,经与客运公司联系,他们有座位数不同的中巴车和大客车两种车型可供选择,每辆大客车比中巴车多15个座位,学校根据中巴车和大客车的座位数计算后得知,如果租用中巴车若干辆,师生刚好坐满全部座位;如果租用大客车,不仅少用一辆,而且师生坐完后还多30个座位.⑴求中巴车和大客车各有多少个座位?⑵客运公司为学校这次活动提供的报价是:租用中巴车每辆往返费用350元,租用大客车每辆往返费用400元,学校在研究租车方案时发现,同时租用两种车,其中大客车比中巴车多租一辆,所需租车费比单独租用一种车型都要便宜,按这种方案需要中巴车和大客车各多少辆?租车费比单独租用中巴车或大客车各少多少元?30、(10分)如图14,在梯形ABCD中,AD∥BC,BC=3AD1)如图甲,连接AC,如果△ADC的面积为6,求梯形ABCD的面积;(2)如图乙,E是腰AB上一点,连接CE,设△BCE和四边形AECD的面积分别为S1和S2,且2S1=3S2,求的值;(3)如图丙,如果AB=CD,CE⊥AB于点E,且BE=3AE,求∠B的度数。
北师大版八年级下册数学期末测试卷(一)(参考答案)一、选择题:12345678910CCDBBADCDB二、填空题:11、 12、ab(a—b)2 13、3,2,2.514、20 15、30 16、三、解答题:17(1)解:由① x>-3 ………………………2分 由② x≤1 ………………………2分 ∴原不等式组的解是-3<x≤1 ……6分(2)解:方程的两边都乘以(x+2)(x-2)得:(x-2)2-(x2-4)=16 ---------------2分解这个方程得:x=-2 ------------4分检验:将x=-2代入(x+2)(x-2)有(x+2)(x-2)=0∴x=-2是增根,原方程无解6分(3)解:原式= -------3分= ----------5分当m=5时,原式= ---------6分18、(1)∵,∴, ---------(1分)又,∴,--------(2分)∴.---------(3分)(2)∵,由,得,----(5分)又,∴ ---------(6分)19、(6分)解:能求出旗杆的高度.………………(1分) 根据题意可知,在△ABC中,∠ACB=50,∠B=90则∠BAC=40…(2分) 在△ABC与△DBA中 ∠BAC=40=∠D ∠B=∠B ∴△ABC∽△DBA………………(4分) ∴,AB2=BCBD…………………(5分) 又∵BC=9 DB=7+9=16∴AB2=916 ∴AB=12(m) 即旗杆的高度为12米.…………(6分)20、解(1)第三组的频率是 ……………………1分 12=60(件) ∴共有60件作品参评 ………2分 (2)由图可知,第四组作品数量最多 ………………………………3分 60=18(件) ∴第四组共有作品18件 …………………………4分 (3)第四组获奖率是……………………………5分 第六组获奖率是 ……………………6分 ∵< ∴第六组的获奖率较高 ………………………7分21、解:如图,矩形ABCD中,∠B=.∵M是BC的中点,BC=6,∴BM=3.. ------------3分(2)在Rt△ABM中,.矩形ABCD中,AD=BC=6.∵AD∥BC,∴∠DAM=∠AMB.又∵∠DEA=∠B=,∴△ADE∽△MAB.∴.∴.∴.--------6分(3)∵△ADE∽△MAB,相似比为,∴.∵,∴.-----------------9分B卷一、填空题22、-3 23、2,1 24、()cm或()cm(不带单位扣1分)25、K=,一、二、三 26、 27、. 二、28、(6分)解:这样的直线可以作4条 ------------------(1分)理由是:若该直线与相交,(1)过点作,交于点,则,∵,∴.(2)过点作直线交于点,使得,----3分 ∵,∴.同理,若该直线与相交,也可作,和,得到,.∴这样的直线可以作出4条. -----------6分29、(10分)解:⑴设每辆中巴车有座位x个,每辆大客车有座位(x+15)个,---1分依题意有 ----4分解之得:x1=45,x2=-90(不合题意,舍去) ----------5分答:每辆中巴车有座位45个,每辆大客车有座位60个。
6分⑵①若单独租用中巴车,租车费用为350=2100(元) -----7分 ②若单独租用大客车,租车费用为(6-1)400=2000(元)-----8分③设租用中巴车y辆,大客车(y+1)辆,则有(1)45y+60(y+1)≥270,(2) 350y+400(y+1)<2000, 解(1)得y≥2,解(2)得y<,∴y=2,当y=2时,y+1=3,运送人数为452+603=270合要求这时租车费用为3502+4003=1900(元) 故租用中巴车2辆和大客车3辆,比单独租用中巴车的租车费少200元,比单独租用大客车的租车费少100元. -------10分30、解:(1)在梯形ABCD中,∵AD∥BC,又△ADC与△ABCD等高,且BC=3AD,∴S△ABC=3S△ADC∴S△ADC=6,∴S梯形ABCD=S△ABC+S△ADC=4S△ADC=243分(2)证明:连接AC,如图甲,设△AEC的面积为S3,则△ADC的面积为S2-S3由(1)和已知可 --------5分解得S1=4S3∴∵△AEC与△BEC等高,∴ -------6分(3)延长BA、CD相交于点M,如图乙,∵AD∥BC,∴△MAD~△MBC. ∴∴MB=3MA。
---------------8分设MA=2x,则MB=6x∴AB=4X∵BE=3AE,∴BE=3X,AE=x∴BE=EM=3x,E为MB的中点又∵CE⊥AB,∴CB=MC由已知得∠B=∠DCB,∴MB=MC.∴△MBC为等边三角形.∴∠B=60. -----------------10分北师大版八年级下册数学期末测试卷(二)本试卷共8页,26个小题,总分为120分,考试时间为120分钟.答案用蓝色、黑色钢笔或圆珠笔书写,答题时不能使用计算器题号一二17181920212223242526得分题目虽简单可要仔细呦!一、选择题(本大题共10个小题,每小题2分,共20分注意每小题的四个选项中只有一个是对的,将正确答案相对应的字母填在括号里)1.△ABC∽△A‘B’C‘,且相似比为2:3,则它们的面积比等于……………………………【 】A2:3 ; B3:2; C4:9; D2. 若a<0,则下列不等式不成立的是……………【 】A. a+5<a+7 B.5a>7a C.5-a<7-a D.3.下列四个命题 ①小于平角的角是钝角;②平角是一条直线;③等角的余角相等;④凡直角都相等。
其中真命题的个数的是……………【 】A.1个 B.2个 C.3个 D.4个 684.下列从左到右的变形是因式分解的是……………【 】图2A.(x+1)(x-1)=x2-1 B.(a-b)(m-n)=(b-a)(n-m) C.ab-a-b+1=(a-1)(b-1) D.m2-2m-3=m(m-2-)5.方程的解为……………【 】CDAB7题图A.2 B.1 C.2 D.1 6.完成下列任务,宜采用抽样调查方式的是……………【 】 A 调查你班同学的年龄情况 B 考察一批炮弹的杀伤半径C 了解你所在学校男、女生人数 D 奥运会上对参赛运动员进行的尿样检查7.如图,AB∥CD,AC⊥BC,则图中与∠BAC互余的角(不添加字母)共有……………【 】 A.4个 B. 3个 C.2个 D.1个778.某中学共有100教师,将他们的年龄分成11个组,其中41~45岁这一组内有14名教师那么,这个小组的频率为……………【 】A.0.14 B.0.20 C.0.28 D.0.36 6210题图…………9.不等式3(2x+5)> 2(4x+3)的解集为……………【 】 A.x>4.5 B.x<4.5 C.x=4.5 D.x>9 10.图中的圆点是有规律地从里到外逐层排列的.设y为第n层(n为正整数)圆点的个数,则下列函数关系中正确的是 ( )A. B.C. D.第12题图BPCA二、填空题(本大题共 8个小题,每小题3分,共24分)11.分解因式: x2y-y3= 。
12.如图,在△ABC中,点P是AB边上的一点,连接CP,要使△ACP∽△ABC,还需要补充的一个条件是 13.如图,将大“E”和小“E”放在同一桌面上,测得l1为3m, l2为2m,大“E”的高度b1为30mm,则小“E”的高度b2为 mm.14题图114. 如图1,图中的 度15. 已知一组数据1,2,3,5,x,它的平均数是3,则这组数据的方差是 16将命题“对顶角相等”改为“如果……那么……”的形式为: 18题图 17.已知两个相似三角形的相似比为2:3,面积之差为25cm2,则较大三角形的面积为= cm2.18、如图,已知函数y = 3x + b和y = ax - 3的图象交于点P( -2,-5) ,则根据图象可得不等式3x + b >ax - 3的解集是 . 19.(本题共7分)解不等式组,并把解集在数轴上表示出来。
20.(本题7分)当时,求的值.21. (本题8分)已知如图,在△ABC中,CH是外角∠ACD的平分线,BH是∠ABC的平分线求证:∠A= 2∠H证明: ∵∠ACD是△ABC的一个外角,∴∠ACD=∠ABC+∠A ( ) ∠2是△BCD的一个外角,∠2=∠1+∠H ( )∵CH是外角∠ACD的平分线,BH是∠ABC的平分线∴∠1= ∠ABC ,∠2=∠ACD ( ) ∴∠A =∠ACD-∠ABC= 2 (∠2 - ∠1) (等式的性质) 而 ∠H=∠2 - ∠1 (等式的性质) ∴∠A= 2∠H ( )22. (本题10分)叙述并证明“三角形的内角和定理”(要求根据下图写出已知、求证并证明)BCA23.(本题满分10分)将某雷达测速区监测到的一组汽车的时速数据整理,得到其频数及频率如下表(未完成) : 注:30~40为时速大于等于30千米而小于40千米,其他类同.(1)请你把表中的数据填写完整;(4分)(2)补全频数分布直方图;(4分)(3)如果汽车时速不低于60千米即为违章,则违章车辆共有多少辆? (2分)24.(本题10分) 一批物资急需一次运往地震灾区,若用n量载重为5t的汽车装运,则会剩余21t物资;若用n量载重为8t的汽车装运,则有(n-1)辆汽车满载,最后一辆汽车不空,但所载物资不足5t,这批物资共有多少吨,汽车有多少辆?25.(本题12分)如图,王华晚上由路灯A下的B处走到C处时,测得影子CD的长为1米,继续往前走3米到达E处时,测得影子EF的长为2米,已知王华的身高是1.5米。
1)求路灯A的高度;(2)当王华再向前走2米,到达F处时,他的影长是多少?ABCDEFMN26.(本题12分)平面直角坐标系内,已知点A(0,6)、点B(8,0),动点P从点A开始段AO上以每秒1个单位长度的速度向点O移动,同时动点Q从点B开始段BA上以每秒2个单位长度的速度向点A移动,设点P、Q移动的时间为t秒.yxOPQA B(1) 求直线AB的解析式;(2) 当t为何值时,以点A、P、Q为顶点的三角形△AOB相似? (3) 当t=2秒时,四边形OPQB的面积多少个平方单位?北师大版八年级下册数学期末测试卷(二)参考答案及评分标准题号12345678910答案CDBCABCABB一、①二、11.y(x+y)(x -y);12.∠B=∠ACP,∠C=∠APC或;13.20;14.65;15. 2;16如果两个角是对顶角,那么这两个角相等;1745;18x>-2②19.解:解不等式①得x<2解不等式②得x> -2…………………………4分所以,原不等式组的解集为-2
三角形的一个外角等于和它不相邻的两个外角的和角平分线的定义等量代换 每空2分BCAMN22. 三角形的三个内角的和为180. ……………………………(2分)已知:△ABC求证: ∠A+∠B+∠C=180……………………………(4分)证明:过点A作直线MN,使MN∥BC∵MN∥BC∴∠B=∠MAB, ∠C=∠NBC(两直线平行,内错角相等)∵∠MAB+∠NBC+∠BAC=180(平角定义)∴∠B+∠C+∠BAC=180(等量代换)即∠A+∠B+∠C=180……………………………(10分)0.18780.285623.解:(1)(2)每问各4分(3)如果汽车时速不低于60千米即为违章,则违章车辆共有76辆. ……………………(10分)24.解:设汽车有n辆,根据题意得…………………………(1分)0<5n+21-8(n-1)<5 …………………………(5分)解得…………………………(7分)因为n为正整数,所以n=9这批物资共有多少吨5n+21=66t…………………………(9分)答; 这批物资共有66吨,汽车有9辆. …………………………(10分)25. 解:(1)设BC=x米,AB=y米,由题意得,CD=1米CE=3米,EF=2米,身高MC=NE=1.5米∵△ABD∽△MCD, △ABF∽△NEFABCDEFMN∴,, G解得H∴路灯A的高度为6米。
……………………(12分)(2)连接AG交BF延长线于点H,∵△ABH∽△GFH,GF=1.5米,BH=8+FH∴,解得, (米)答:当王华在向前走2米,到达F处时,他的影长是米…………………………(12分)26、解:(1)设直线AB的解析式为y=kx+b将点A(0,6)、点B(8,0)代入得解得直线AB的解析式为: …………………………(4分)(2) 设点P、Q移动的时间为t秒,OA=6,OB=8yxOPQA BM∴勾股定理可得,AB=10 ∴AP=t,AQ=10-2t.分两种情况,① 当△APQ∽△AOB时 则 ,即,解得② 当△AQP∽△AOB时则,即,解得综上所述,当或时,以点A、P、Q为顶点的三角形△AOB相似…………………………(8分)(3) 当t=2秒时,四边形OPQB的面积,AP=2,AQ=6过点Q作QM⊥OA于M,△AMQ∽△AOB∴,即解得QM=4.8∴ΔAPQ的面积为: (平方单位)∴四边形OPQB的面积为:S△AOB-S△APQ=24-4.8=19.2(平方单位)…………………………(12分) 北师大版八年级下册数学期末测试卷(三)时间:100分钟 满分:120分一、 相信你一定能填对!(每小题3分,共30分)1. 下列命题中错误的是 ( ). (A)平行四边形的对边相等 (B)两组对边分别相等的四边形是平行四边形 (C)矩形的对角线相等 (D)对角线相等的四边形是矩形 2. 对2009年我国发现的首例甲型H1N1流感确诊病例在成都某医院隔离观察,要掌握他在一周内的体温是否稳定,则医生需了解这位病人7天体温的 ( ). (A)平均数 (B)中位数 (C)众数 (D)方差3. 下列计算正确的是 ( ).(A) (B)(C) (D)4. 长度分别为9、12、15、36、39的五根木棒,能首尾相连搭成直角三角形的个为( ).(A)1 (B)2 (C)3 ( D)45. 将矩形纸片ABCD按如图1所示的方式折叠,得到菱形AECF.若AB=3,则BC的长为 ( ).(A) (B)2 (C) (D)1 6. 为响应承办“绿色奥运”的号召,九年级(1)班全体师生义务植树300棵.原计划每小时植树棵,但由于参加植树的全体师生植树的积极性高涨,实际工作效率提高为原计划的1.2倍,结果提前20分钟完成任务.则下面所列方程中,正确的是 ( ). (A) (B) (C) (D)7. 若函数y=的图象在第二、四象限,则 ( ). (A)k<0 (B)k>0 (C)k=0 (D)k为任何实数8. 名学生在一次数学测试中的成绩为80,82,79,69,74,78,,81,这组成绩的平均数是77,则的值为 ( ).(A)76 (B)75 (C)74 (D)739. 根据如图2所示的(1),(2),(3)三个图所表示的规律,依次下去第个图中平行四边形的个数是 ( ).(A)3n (B)6n (C)3n(n+1) (D)6n(n+1)(图2)……(1)(2)(3)10.如图3-1,在矩形ABCD中,动点P从点B出发,沿BC,CD,DA运动至点A停止.设点P运动的路程为x,△ABP的面积为y,如果y关于x的函数图象如图3-2所示,则△ABC的面积是 ( ) (A)10 (B)16 (C)18 (D)20 二、 你能填得又对又快吗?(每小题3分,共30分)11. 当 时,分式没有意义.12. 某种纸的厚度为0.0089cm,用科学计数法表示为 cm.13. 近视眼镜度数y(度)与镜片焦距x(m)成反比例函数关系,已知400度近视眼镜片的焦距为0.25m,则眼镜度数y与镜片焦距x之间函数关系式为 .14. 计算:= .15. 在平行四边形ABCD中,BD=2cm,△ABD为等边三角形(如图4),则平行四边形ABCD的周长为 .16. 方程的解 为 .17. 已知一直角三角形两直角边分别为5,12.则这个直角三角形的斜边长为 .18.平面平面直角坐标系中有六个点A(1,5)、B(-3,)、C(-5,-1)、D(-2,)、E(3,)、F(,2),其中有五个顶点在同一反比例函数图象上,不在这个反比例函数图象是的点是 .19. 如图5(1)是一个等腰梯形,由6个这样的等腰梯形恰好可以拼出如图5(2)所示的一个菱形.对于图5(1)中的等腰梯形,请写出它的内角的度数或腰与底边长度之间关系的一个正确结论: .20. 定义:是不为1的有理数,我们把称为的差倒数.如:2的差倒数是,的差倒数是.已知,是的差倒数,是的差倒数,是的差倒数,……,依此类推,则 .三、认真解答,一定要细心.(共60分)21. (8分) 解方程:22. (10分) 课堂上,李老师给大家出了这样一道题:当x=3;5-2; 7+时,求代数式的值.小明一看说: “太复杂了,怎么算呢?头都疼了。
你能帮小明解决这个问题吗?请写出具体过程.23. (10分)如图6,在平行四边形ABCD中, 分别为边的中点,连接.(1)求证:.(2)若,则四边形是什么特殊四边形?请证明你的结论. 24.(10分))某商店用80 000元购进一皮服装,以58元一件销售,结果供不应求.然后又用了176 000元购进数量是第一次的2倍,进货单价比第一次贵4元的同样服装.现相同的销售价继续销售,最后剩下500件按8折销售完毕.问两次共进服装多少件?该商店这批服装是盈利亏损,盈亏是多少?25. (12分)如图7,一次函数的图象与反比例函数的图象相交于A、B两点.(1)根据图象,分别写出A、B的坐标;(2)求出两函数解析式;(3)根据图象回答:当为何值时,一次函数的函数值大于反比例函数的函数值 26. (10分)如图8,在梯形ABCD中,AB∥DC, DB平分∠ADC,过点A作AE∥BD,交CD的延长线于点E,且∠C=2∠E.(1)求证:梯形ABCD是等腰梯形.(2)若∠BDC=30,AD=5,求CD的长.参考答案与解析一、选择:1.D 解析:该题主要考查四边形的基本性质,较简单。
2.D 解析:考查平均数、中位数、众数、方差的区别,较简单3.D 解析:考查分式的计算,A B考查通分,C D考查同分母分式的加法4.B 解析:考查勾股定理,建议记住常见勾股数5.A 解析:本题属于折叠问题,经过折叠可知∠DAF=∠OAF, OE=BE,四边形AECF是菱形,所以有∠OAF=∠OAE, ,又∠DAF+∠OAF+∠OAE=90,所以∠DAF=∠OAF=∠OAE=30由菱形对角线垂直可知,∠AOE=90,即△AOE是直角三角形,因为直角三角形中,30所对的直角边等于斜边的一半,所以AE=2,OE=1,BC=OA=6.A 解析:利用计划和实际用时相差20分钟列方程,注意单位换算,20分钟应换成小时7.B 解析:考虑该函数是反比例函数,考查反比例函数与函数图像的关系8.D 解析:考查平均数的求法9.C 解析:找规律,写出函数关系,注意不要数漏平行四边形个数★10.A 解析:由题意可知,当P在CD上运动时,△ABP面积不变,即P与C重合时,x=BC=4,P 与D重合时,x=BC+CD=9,即CD=AB=5,S△ABP=ABBC=10二、填空11.2 解析:分母为零时,分式无意义; 12 8.9 解析:考查科学计数法13.y= 解析:考查反比例函数的求法 14. 0 解析:任何数的0次方都等于115. 8cm 解析:AB=BC=CD=AD=BD=2cm16. x=-5 解析:考查分式方程的解法17. 13 解析:勾股定理18. D 解析:反比例函数为y=5/x19. 内角度数60、60、120、120(底边长是腰长的二倍) 解析:由图2可知,梯形腰和上底长相等,下底角和上底角相等★20. 3/4 解析:-1/3、 3/4、 4、 -1/3……循环三、解答21. 解:原方程可化为:3x+2=x-1.解得,x=,经检验,是原分式方程的解.(注意不要忘记验根)22.解析:对于较复杂的分式,在代入数据计算前通常要先对分式进行化简计算解:== 所以,当x= 3; 5-2; 7+时,原式的值仍然是(没有必要代入计算).23.解析:该题主要考查全等三角形,直角三角形斜边上的中线等于斜边的一半,以及菱形的判定 解:(1)在平行四边形ABCD中,∠A=∠C,AD=CB,AB=CD.∵E,F分别为AB,CD的中点∴AE=CF 在和中,.(2)若AD⊥BD,则四边形BFDE是菱形. 证明:,是直角三角形,且是斜边(或)是的中点,.由题意可知且,四边形是平行四边形,四边形是菱形.24. 解析:分式应用题最主要的是找出题中的等式关系,题中提到“进货单价比第一次贵4元”,我们可以利用这个关系来进行列式。
解:设第一批购金服装x件,则第二次购进2x件.依题意 解得 x=2000(件). 因此,两次共进服装6000件. 这两批服装卖完后的销售额为:58(6000-500)+5850080%=342200元这两批服装盈亏情况:342200-176000-80000=86200>0.因此,该商店这批服装是盈利,盈利86200元.25 解析:该题只要考查函数与图像的关系,函数方程的求法解:(1)A(-6,-2)、B(4,3);(2)∵两图象相交于A(-6,-2)、B(4,3)两点 ∴m=12. 反比例函数解析式为y=. 解得 一次函数解析式为y=x-3. (3)x>4或-6<x<0(注:由图像直接得出)26.(1)证明:∵AE∥BD,∴∠E=∠BDC∵DB平分∠ADC∴∠ADC=2∠BDC又∵∠C=2∠E ∴∠ADC=∠B∴梯形ABCD是等腰梯形(2)解:由第(1)问,得∠C=2∠E=2∠BDC=60,且BC=AD=5∵ 在△BCD中,∠C=60, ∠BDC=30 ∴∠DBC=90∴DC=2BC=10北师大版八年级下册数学期末测试卷(四)Ⅰ卷一、选择题:(请将正确的选项填写在Ⅱ卷的答题卡中)(每小题3分,共30分)1.要使不等式 的值不小于1,那么m的取值范围是 【 】 A.m>5 B. m<–5 C. m≥5 D.m≥–52. 若是完全平方式,则的值是【 】(A).-1; (B).7; (C).7或-1; (D).5或1.3.解关于x的方程产生增根,则常数的值等于【 】 (A).-1; (B).-2; (C).1; (D).2.4. 下列长度的各组线段中,能构成比例的是【 】 (A)2,5,6,8; (B)3,6,9,18; (C)1,2,3,4; (D)3,6,7,9.5.在相同时刻物高与影长成比例,如果高为1米的测竿的影长为80厘米,那么影长为9.6米的旗杆的高为【 】Y(元)x(件)o44002006题图(A).15米; (B).13米; (C).12米; (D).10米.6、如图,反映的是某公司产品的销售收入与销售量的关系,反映的该公司产品的销售成本与销售量的关系,根据图象判断该公司盈利时销售量为【 】(A).小于4件; (B). 等于4件;(C). 大于4件; (D) 大于或等于4件. 7.人数相等的八(1)和八(2)两个班学生进行了一次数学测试,班级平均分和方差如下: 则成绩较为稳定的班级是【 】 (A). 八(1)班; (B). 八(2)班; (C).两个班成绩一样稳定; (D).无法确定.8.下列命题是真命题的是【 】 (A) .相等的角是对顶角; (B). 两直线被第三条直线所截,内错角相等; (C).若 ; (D). 有一角对应相等的两个菱形相似.9.商品的原售价为元,若按该价的8折出售,仍获利n%,则该商品的进价为【 】元.(A).0.8n%; (B).0.8 (1 + n%); (C).; (D)..10. 如图,在△ABC中,∠ABC的平分线与∠ACB的外角平分线相交于点D,第10题 ∠D=20,则∠A的度数是 【 】A.20 B.30 C.40 D.50 八数试题Ⅱ卷1、 选择题答题卡:(每小题3分,共30分)题号12345678910选项二、填空题: (每小题3分,共30分) 11.因式分解:a4–1= ;12.把命题“任意两个直角都相等”改写成“如果……,那么……”的形式第13图是 。
13. 如图所示:∠A=50,∠B=30,∠BDC=110, 则∠C=______;14. 若分式的值为正数,则x应满足的 条件是___________________________. 15.两个相似三角形面积比为2,周长比为K,则=__________.16.已知两个一次函数,若, 则x的取值范围是____________第19图17.若,则= .18.若,则= 19.如图,已知a∥b,则∠ACD= . 20.数与数之间的关系非常奇妙.例如: ①,②,③,……根据式中所蕴含的规律可知第n 个式子是 .三、解答题:21、计算基本功考查: 1)、分解因式:(每小题3分,共6分)①、; ②、 ;2)、解下列不等式和不等式组(每小题4分,共8分)①、 ②、 并把解集在数轴上表示出来. 3) 、(3+2=5分)先化简,后求值: ,其中x= 4) .(5分)解分式方程: 22、(7分)甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购买商品超出300元之后,超出部分按原价8折优惠;在乙超市累计购买商品超出200元之后,超出部分按原价8.5折优惠.设顾客预计累计购物x元(x>300).(1)请用含x的代数式分别表示顾客在两家超市购物所付的费用;(2)顾客到哪家超市购物更优惠?说明你的理由.23、(6分)如图所示,已知:点D在△ABC的边AB上,连结CD,∠1=∠B,AD=4,AC=5,求: BD的长.24.(7分)已知:A、B两地相距80千米,甲骑车从A地出发1小时后,乙也从A地出发,用相当于甲1.5倍的速度追赶,当追到B地时,甲比乙先到20分钟,求甲、乙的速度.25.(8分)某技校对所属文秘专业的90名学生进行打字速度测试,测试结果见表格与频数分布直方图.打字速度/(个/分钟)频数频率80~10030.033101~120121~140270.3141~160240.267161~180181~20060.067合计901(1) 补全表格与频数分布直方图;等级打字速度优秀160以上良好121~160及格101~120不合格101以下(2) 若打字速度的测试等级如下表,请画出该校学生测试等级扇形统计图.26.(8分)如图,已知点A在直线l外,点B、C在直线l上.(1)点P是△ABC内一点,求证:∠P>∠A;(2)试判断:在△ABC外又和点A在直线l同侧,是否存在一点Q,使∠BQC>∠A?试证明你的结论.题号12345678910选项CBBCCBDCC 参考答案—仅供参考11、12、13、30;14、x<3且x≠0;15、16、x<;17、18、219、7320、21、1)① a(a+1)(a-1); ②(x-y+1)(x-y-1).2)① x≤-2; ② -10.85x+30时,解得x<600,而x>300, ∴300600,即当顾客购物超过600元时,到甲超市更优惠.23、解:∵∠1=∠B.∠A=∠A.∴△ACD∽△ABC.∴AC=ADAB.∴AB=6.25.∵AD=4.∴BD=2.25.解:设甲的速度为x千米/时,乙的速度为1.5千米/时, 根据题意得:24、25、(1)21,0.233,9, 0.1; (2) 26、(1)延长BP交AC于D,则∠BPC>∠BDC,∠BDC>∠A故∠BPC>∠A;(2)在直线l同侧,且在△ABC外,存在点Q,使得∠BQC>∠A成立.此时,只需在AB外,靠近AB中点处取点Q,则∠BQC>∠A(证明略).北师大版八年级下册数学期末测试卷(五) 一、选择题(本题共10小题,每小题3分,共30分。
每小题有四个选项,其中只有一个是正确的1.不等式组的解集是( )A. x>1 B. x>-2 C. -2<x<1 D. x>1或x<-2 2.下列从左到右的变形,。