三线八角教学重点和难点三线八角的意义是重点,能在各种变式的图形中找出这三类角既是重点,也是难点教学过程设计一、从学生原有的认识结构提出问题教师提问:1两条直线相交后产生了几个角?每两个角之间的关系是什么?(除平角外,产生四个角,对顶角相等,邻补角互补)2三条直线之间也可以有什么样的位置关系?(可以让学生用手中的铅笔表示直线)在学生回答的基础上,教师打出投影,(四种情况,如图2—30)(1)三条直线都没有交点(2)两条直线平行被第三条直线所截(3)三条直线两两相交,有三个交点(4)三条直线交于一点上节课是对相交的两条直线所形成的四个角进行研究,今天我们就对三条直线相交后形成的八个角如图2—30(3)进行研究,简称为:三线八角(板书课题)二、三线八角的意义1教师用谈话方式提出问题:在图2—31中,l1和l3(或l2和l3)所形成的四个角是有公共顶点的,而每两个角之间的关系从位置来分,可分为两类:对顶角和邻补角,而上面四个角和下面四个角是没有公共顶点的,那么上面的一个与下面的一个又有什么样的位置关系呢?这就是下面所要研究的问题2分析特点,形成概念(1)同位角的意义先引导学生分析∠1和∠5有什么共同特点?在学生回答的基础上,教师归纳总结出共同特点是:均在直线l3的一侧,且分别在l1和l2的上方,像这样的两个角叫作同位角请同学们指出:图中还有同位角吗?(答:∠2与∠6,∠4与∠8,∠3与∠7)(2)内错角的意义(3)同旁内角的意义(这两种角的教法类似同位角,如果学生要问∠1和∠6,∠1和∠7是什么关系,可以简单说一下,不问也不说)3变式练习,揭露概念本质属性(1)如图2—32,说出以下各对角是哪两条直线被第三条直线所截而得到的?∠1与∠2,∠2与∠4,∠2与∠3答:∠1与∠2是l2、l3被l1所截而得到的一对同旁内角∠2与∠4是直线l2、l1被l3所截而得到的同旁内角∠2与∠3是l2、l1被l3所截而得到的同位角(2)如图2—33,找出下列图中的同位角,内错角和同旁内角答:同位角有:∠2与∠3,∠4与∠7,∠4与∠8;内错角有∠1与∠3,∠6与∠8,∠6与∠7;同旁内角有∠3与∠8,∠1与∠4(3)如图2—34,指出图中∠1与∠2,∠3与∠4的关系答:∠1与∠2是内错角,∠3与∠4也是内错角4正确识别这三类角应注意的问题(1)识别这三类角首先要抓住“三条线”,即:哪两条线被哪一条直线所截(2)抓住“截线”,截线的同侧有哪些角、从中找出同位角和同旁内角,在截线的两侧找内错角三、综合应用,课堂练习1找出如图2—35中的对顶角和邻补角答:对顶角有四对:它们是∠1与∠3,∠2与∠4,∠5与∠6,∠7与∠8;邻补角有∠1与∠2,∠2与∠3,∠3与∠4,∠4与∠1,∠5与∠8,∠8与∠6,∠6与∠7,∠7与∠5(还可以找出图2—35中相等的角,即四对对顶角)2如图2—36,如果∠1=∠2=∠7,那么还有哪些角是相等的答:∠1与∠4是邻补角,∠2与∠5是邻补角,∠3与∠6是邻补角∠7与∠8是邻补角,因为∠1=∠2=∠7,∠2=∠3(对顶角相等),所以∠1=∠2=∠3=∠7,则∠4=∠5=∠6=∠8(等角的补角相等)3如图2—37中,若∠1=∠2,证明:∠3与∠4是互补的角证明:因为∠1=∠3,(对顶角相等)∠1=∠2,(已知)所以∠2=∠3(等量代换)又因为∠2+∠4=180°所以∠3+∠4=180°(等量代换)即∠3与∠4是互补的角此题在证明的分析中,可以用以下逻辑思考的过程,即“执果索因”法若要证∠3与∠4互补,即证∠3+∠4=180°,但∠4与∠2的和为180°,因此需证∠3=∠2,由于∠3=∠1(对顶角相等),∠1=∠2是已知,所以∠2=∠3而写出证明过程时,要从先证∠2=∠3出发,最后得到∠3+∠4=180°以上的几何证明题的思考过程是一种常见的方法,它是从要证明结果的出发,探索要得出这个结果时,应具备的条件,只要将条件准备充足,就能得到要求的结果四、小结1教师先提出以下问题:(1)在所学的知识中,直线的位置关系是怎样形成和发展的?(2)学了哪些相互关系的角?(3)寻找同位角、内错角和同旁内角关键应准确找到什么?2在学生回答的基础上,教师指出,(1)(投影)直线位置关系所对应的基本图形结构如图2—38(2)学过六咱相互关系的角①互为余角,②互为补角(邻补角是特殊情形),③对顶角,④同位角,⑤内错角,⑥同旁内角(3)寻找同位角,同旁内角关键在于准确找到三线(两线被第三线所截)五、作业1选书中习题2以下六个题供选用(1)指出图2—39(1)中,①∠2和∠5的关系是___________;②∠3和∠5的关系是___________;③∠2和____是直线____、______被_____所截,形成的同位角;④∠1和∠4呢?∠3和∠4呢?∠6和∠7是对顶角吗?(2)指出图中2—39(2)中,①∠C和∠D的关系:②∠B和∠GEF的关系;③∠A和∠D的关系;④∠AGE和∠BGE的关系;⑤∠CFD和∠AFB的关系(3)如图2—39(3),用数学标出的八个角中①同位角有________________;②内错角有________________;③同旁内角有_______________;(4)如图2—39(4),若∠1=∠2,可推出∠1与∠ADE______________;∠1与∠BDE__________________(5)判断正误:如图2—39(5),①∠1和∠B是同位角;②∠2和∠B是同位角;③∠2和∠C是内错角;④∠EAD和∠C是内错角;(6)如图2—39(6),①∠1和∠4是同位角;②∠1和∠5是同位角;③∠2和∠7是内错角;④∠1和∠4是同旁内角;⑤∠1和∠2是同旁内角;板书设计课堂教学设计说明1本教案为1课时45分钟2上节课讨论了两条直线相交以后所形成的四个角,这一节课是进一步讨论三条直线相交后所形成的八个角,所以在教课过程,要运用基本图形结构将所学的知识及其内在联系向学生展示3在讲三线八角概念时,一定要细致地分析、顾名思义,把握住两个关键的环节,“三条线与一条线”,尽量给出变式的图形,让学生分辨清楚4这节课虽然不涉及两条直线平行后被第三条直线所截的问题,但在可能的情况下,将平行线的图形让学生见到,对下一步的学习很有好处,例如,平行四形中的内错角,学生开始接受起来有一定困难,在这一课时中,出现这个基本图形,为以后学习打下基础5在课堂练习中,用到等量代换的公理,建议教师参考小资料,将等量公理补充给学生6本课时对“执果索因”的方法进行了介绍在今后的学习中经过教师多次引导,学生就会建立正确的思维习惯。