轴对称(2),上节课我们共同探讨了轴对称图形,知道现实生活中由于有轴对称图形,而使得世界非常美丽那么大家想一想,什么样的图形是轴对称图形呢? 今天继续来研究轴对称的性质,探索,如图,ABC和ABC关于直线MN对称,点A、B、C分别是点A、B、C的对称点,线段AA、BB、CC与直线MN有什么关系? 图中A、A是对称点,AA与MN垂直,BB和CC也与MN垂直 AA、BB和CC与MN除了垂直以外还有什么关系吗?,ABC与ABC关于直线MN对称,点A、B、C分别是点A、B、C的对称点,设AA交对称轴MN于点P,将ABC和ABC沿MN对折后,点A与A重合,于是有AP=AP,MPA=MPA=90所以AA、BB和CC与MN除了垂直以外,MN还经过线段AA、BB和CC的中点,对称轴所在直线经过对称点所连线段的中点,并且垂直于这条线段我们把经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线 自己动手画一个轴对称图形,并找出两对称点,看一下对称轴和两对称点连线的关系,我们可以看出轴对称图形与两个图形关于直线对称一样,对称轴所在直线经过对称点所连线段的中点,并且垂直于这条线段,归纳图形轴对称的性质: 如果两个图形关于某条直线对称,那么对称轴是任何一对对称点所连线段的垂直平分线类似地,轴对称图形的对称轴是任何一对对称点所连线段的垂直平分线,,2作好图后,用直尺量出AP1、AP2、BP1、BP2、CP1、CP2讨论发现什么样的规律,探究结果: 线段垂直平分线上的点与这条线段两个端点的距离相等即AP1=BP1,AP2=BP2, 证明,证法二:利用轴对称性质 由于点C是线段AB的中点,将线段AB沿直线L对折,线段PA与PB是重合的,因此它们也是相等的 带着探究1的结论我们来看下面的问题,探究2 如右图用一根木棒和一根弹性均匀的橡皮筋,做一个简易的“弓”,“箭”通过木棒中央的孔射出去,怎么才能保持出箭的方向与木棒垂直呢?为什么?,探究过程: 1如下图甲,若AP1BP1,那么沿L将图形折叠后,A与B不可能重合,也就是APP1BPP1,即L与AB不垂直 2如下图乙,若AP1=BP1,那么沿L将图形折叠后,A与B恰好重合,就有APP1=BPP1,即L与AB重合当AP2=BP2时,亦然,探究结论: 与一条线段两个端点距离相等的点,在这条线段的垂直平分线上也就是说在探究2图中,只要使箭端到弓两端的端点的距离相等,就能保持射出箭的方向与木棒垂直,评析:上述两个探究问题的结果就给出了线段垂直平分线的性质,即:线段垂直平分线上的点与这条线段两个端点的距离相等;反过来,与这条线段两个端点距离相等的点都在它的垂直平分线上所以线段的垂直平分线可以看成是与线段两端点距离相等的所有点的集合,随堂练习:,课本P62练习 1、2,小结,这节课通过探索轴对称图形对称性的过程,了解了线段的垂直平分线的有关性质,同学们应灵活运用这些性质来解决问题,作业:,课本P64习题131第3、4、9题,。