文档详情

震动荷载下结构计算

每****
实名认证
店铺
PPT
1.13MB
约46页
文档ID:141387020
震动荷载下结构计算_第1页
1/46

2021/3/111第第9章章 结构动力计算结构动力计算学习要求学习要求 1 1、理解本章的基本概念(自振频率、周期、振型、理解本章的基本概念(自振频率、周期、振型、阻尼、自由振动、强迫振动、共振等)阻尼、自由振动、强迫振动、共振等)2 2、掌握单、双自由度体系在自由振动及简谐荷载作、掌握单、双自由度体系在自由振动及简谐荷载作用下的动力计算用下的动力计算3 3、了解单自由度体系在任意荷载作用下的动力解,、了解单自由度体系在任意荷载作用下的动力解,了解阻尼对振动的影响,了解结构的共振现象了解阻尼对振动的影响,了解结构的共振现象4 4、了解多自由度体系在自由振动及简谐荷载作用下、了解多自由度体系在自由振动及简谐荷载作用下的动力解,了解振型叠加法的动力解,了解振型叠加法2021/3/1129.1 概述概述一、结构动力计算的特点一、结构动力计算的特点 动力荷载和静力荷载的区别:动力荷载和静力荷载的区别:动荷载动荷载是指大小、方向或作用位置随时间迅速变化,是指大小、方向或作用位置随时间迅速变化,所引起的结构的加速度较大,由此产生的惯性力不容所引起的结构的加速度较大,由此产生的惯性力不容忽视的荷载。

忽视的荷载由于动力荷载作用使结构产生的内力和位移称为动由于动力荷载作用使结构产生的内力和位移称为动内力和动位移,统称为内力和动位移,统称为动力反应动力反应动力计算的基本特点有两个:动力计算的基本特点有两个:1 1、动力反应与时间有关动力反应与时间有关2 2、建立平衡方程要包括惯性力建立平衡方程要包括惯性力2021/3/113二、动力荷载的种类二、动力荷载的种类1 1、周期荷载、周期荷载 周期荷载中最简单也是最重要的一种动力荷载为周期荷载中最简单也是最重要的一种动力荷载为简简谐荷载谐荷载,即荷载随时间,即荷载随时间 t 的变化规律可用正弦或余弦的变化规律可用正弦或余弦函数表示函数表示2 2、冲击荷载、冲击荷载 这类荷载在很短时间内,荷载值急剧增大或急剧减小这类荷载在很短时间内,荷载值急剧增大或急剧减小各种爆炸荷载属于这一类当升载时间趋于零时,就各种爆炸荷载属于这一类当升载时间趋于零时,就是突加荷载是突加荷载3 3、随机荷载、随机荷载如地震荷载如地震荷载2021/3/114三、弹性体系的振动自由度三、弹性体系的振动自由度 确定弹性体系中全部质量在任意时刻的位置所需的确定弹性体系中全部质量在任意时刻的位置所需的独立几何参数的个数,称为弹性体系的振动自由度。

独立几何参数的个数,称为弹性体系的振动自由度在建筑结构振动中,为了简化计算,把质块看作质在建筑结构振动中,为了简化计算,把质块看作质点在平面运动中确定一个点需要两个独立的坐标在平面运动中确定一个点需要两个独立的坐标在确定振动自由度时,假定变形前后杆上任意两点在确定振动自由度时,假定变形前后杆上任意两点之间的距离保持不变之间的距离保持不变质点质点1个个1个个2个个2个个1个个 确定体系自由度与结构是否为静确定体系自由度与结构是否为静定或超静定无关定或超静定无关2021/3/115四、体系振动的衰减现象四、体系振动的衰减现象阻尼力阻尼力使结构在振动过程中能量耗散的因素,统称为使结构在振动过程中能量耗散的因素,统称为阻尼阻尼阻尼是结构的一个重要动力特性阻尼是结构的一个重要动力特性所以,在建立运动方程时,除了动力荷载、惯性力所以,在建立运动方程时,除了动力荷载、惯性力等外,还须引入造成能量损耗的力,即阻尼力等外,还须引入造成能量损耗的力,即阻尼力单自由度体系的阻尼力可表示为:单自由度体系的阻尼力可表示为:D(t)=c 式中:式中:c 阻尼系数阻尼系数 质点位移速度质点位移速度 式中的负号表示阻尼力的方向恒与速度的方向相反。

式中的负号表示阻尼力的方向恒与速度的方向相反2021/3/116五、动力计算问题的分类五、动力计算问题的分类1、自由振动、自由振动 自由振动自由振动是由初始位移和初始速度引起的振动,在振是由初始位移和初始速度引起的振动,在振动过程中没有动荷载作用动过程中没有动荷载作用2、强迫振动、强迫振动 结构在振动时仍受到动力荷载的作用,这时的振结构在振动时仍受到动力荷载的作用,这时的振动称为强迫振动动称为强迫振动2021/3/1179.2 单自由度体系自由振动时的运动方程单自由度体系自由振动时的运动方程ymkymk 图中弹簧的刚度系数图中弹簧的刚度系数k11(使弹(使弹簧伸长单位距离所需施加的力)簧伸长单位距离所需施加的力),必须等于结构的刚度系数(图中立必须等于结构的刚度系数(图中立柱在柱顶有单位水平位移时在柱顶柱在柱顶有单位水平位移时在柱顶所需施加的水平力)所需施加的水平力)mkym一、刚度法一、刚度法 取质量取质量mm为对象,画受力图为对象,画受力图m(t)+k11y(t)=0k11y 弹性力,它的方向恒与位移的方向相反弹性力,它的方向恒与位移的方向相反 m 惯性力,它的方向恒与加速度的方向相反惯性力,它的方向恒与加速度的方向相反由达朗伯原理,任一时刻的动力平衡方程为:由达朗伯原理,任一时刻的动力平衡方程为:2021/3/1182、柔度法、柔度法y(t)m 根据达郎伯原理,以静力平衡位置为计算位移的起点,作用根据达郎伯原理,以静力平衡位置为计算位移的起点,作用在质量在质量mm上只有惯性力上只有惯性力FI=m(t),则运动方程为:,则运动方程为:my(t)=m(t)11mP=1 在单自由度体系中,柔度系数在单自由度体系中,柔度系数11与刚度系数与刚度系数k11,互为倒数,互为倒数,即即11=1/k111m k 则上式与刚度法的结论一致。

则上式与刚度法的结论一致m(t)+k11y(t)=0 为立柱的柔度系数,为立柱的柔度系数,即单位水平力即单位水平力P=1作作用在柱顶时柱顶的水用在柱顶时柱顶的水平位移2021/3/119二、自由振动微分方程的解答二、自由振动微分方程的解答y(t)=m(t)11(柔度法)(柔度法)m +k11y=0(刚度法)(刚度法)振动微分方程:振动微分方程:写成写成+2y=0式中:式中:11111mmk上式为二阶常系数齐次微分方程,其解为:上式为二阶常系数齐次微分方程,其解为:y(t)=y0cost+sin t=Asin(t+)v0所以,所以,y(t)为时间为时间t的周期函数,质点作简谐振动的周期函数,质点作简谐振动式中:式中:y0为初始位移;为初始位移;v0为初始速度为初始速度振幅振幅22020vyA初相位角初相位角001vytg为圆频率,也为圆频率,也称为自振频率称为自振频率2021/3/1110三、结构的自振周期和自振频率三、结构的自振周期和自振频率y(t)=y0cost+sin t=Asin(t+)v0上式周期函数的周期为:上式周期函数的周期为:T=2(称为结构自振周期)(称为结构自振周期)结构自振周期的计算公式:结构自振周期的计算公式:gWmkmT111111222式中:式中:W=mg为质块的重量为质块的重量结构自振频率(即圆频率)的计算公式:结构自振频率(即圆频率)的计算公式:1111111Wgmmk 结构自振频率与自振周期,是结构自身固有的重要动力特性,结构自振频率与自振周期,是结构自身固有的重要动力特性,它只与体系的质量及刚度(或柔度)有关,而与动荷载及初始干它只与体系的质量及刚度(或柔度)有关,而与动荷载及初始干扰无关。

刚度越大或质量越小,则自振频率越高,反之越低刚度越大或质量越小,则自振频率越高,反之越低在动荷载作用下结构的动力反应都与自振周期和自振频率有关!在动荷载作用下结构的动力反应都与自振周期和自振频率有关!单位:弧度单位:弧度/秒秒(1/s)2021/3/1111 例:如图所示简支梁,在梁的跨度中点有一个集中质量例:如图所示简支梁,在梁的跨度中点有一个集中质量m忽略梁本身的质量,求梁的自振周期和自振频率略梁本身的质量,求梁的自振周期和自振频率EI为常数为常数mEIL/2L/2P=1L/4解:解:1 1、自振周期、自振周期112mT 在在m作用处,加一竖向作用处,加一竖向单位力单位力P=1,作,作M图图 由图乘法得:由图乘法得:EIl48311EImlT4823 所以:所以:311481mlEIm2021/3/1112 例:求如图所示梁的自振周例:求如图所示梁的自振周期梁的质量分布不计,支期梁的质量分布不计,支座的弹簧刚度系数座的弹簧刚度系数3512lEIk LL/2L/2ACBWEIEIkACBP=1解:该结构为单自由度体系解:该结构为单自由度体系柔度系数柔度系数 =1+211/2EIlkRB24531、计算、计算 1 EIl4852312、计算、计算 2 此时只有杆件变形,弹簧不变形此时只有杆件变形,弹簧不变形此时只有弹簧变形,杆件不变形此时只有弹簧变形,杆件不变形ACBP=1L/2L/4作单位荷载弯矩图,由图乘法得:作单位荷载弯矩图,由图乘法得:EIl485323、柔度系数、柔度系数 EIl245321EIgWlgWT2452234、自振周期、自振周期T2021/3/1113 例:如图所示,忽略柱子的质量,求此体系的自振频率。

LEIm 解:体系为单自由度体系111mP=1L 由图乘法得:EIllllEI3)3221(131131131mlEIm2021/3/1114 例:如图所示,忽略柱子的质例:如图所示,忽略柱子的质量,横梁的质量为量,横梁的质量为m,求此体系,求此体系的自振频率的自振频率EAmLh解:体系为单自由度体系mk11k111 取横梁为对象,由平衡方程得:k1133hEI33hEI33311633hEIhEIhEIk3116mhEImk2021/3/1115 例:如图所示桁架,在跨中的结点上有集中质量m若略去桁架自重和质量的水平运动,各杆的EA相同,试计算m竖向振动的自振周期和自振频率LLL 解:EAlNi211 在质量m处加一单位力,求出各杆的轴力P=110025.025.0)221(22)25.0(21122211EAlllEAEAlNiEAmlmT2)22(2211)22(2111mlEAm2021/3/1116四、阻尼对自由振动的影响四、阻尼对自由振动的影响ymkymkc 取质块取质块mm为对象,其上作用的力,除弹性力为对象,其上作用的力,除弹性力ky、惯性力惯性力 m m外,还有阻尼力外,还有阻尼力 c平衡方程为:平衡方程为:m +c +k y=0因为:因为:mk11令:令:mc2 称为阻尼比称为阻尼比mcmky2021/3/1117有阻尼自由振动方程可写为:有阻尼自由振动方程可写为:+2+2y=0微分方程的解答分三种情况讨论:微分方程的解答分三种情况讨论:1、1(即大阻尼情况)(即大阻尼情况)体系不产生振动体系不产生振动3、=1(即临界阻尼情况)(即临界阻尼情况)体系从初始位移出发,逐渐回到静平衡位置而无体系从初始位移出发,逐渐回到静平衡位置而无振动发生。

振动发生1ln21kkyynkkyynln21或或 这时的阻尼系数称为临界阻尼系数,它是使体系不这时的阻尼系数称为临界阻尼系数,它是使体系不发生振动的最小阻尼发生振动的最小阻尼cc=2m2021/3/1119 例:如图所示排架,横梁例:如图所示排架,横梁及柱的部分质量集中在横梁及柱的部分质量集中在横梁处,结构为单自由度体系处,结构为单自由度体系为进行振动实验,在横梁处为进行振动实验,在横梁处加一水平力加一水平力P P,柱顶产生侧移,柱顶产生侧移y y0 0=0.6cm=0.6cm,这时突然卸除荷,这时突然卸除荷载载P P,排架作自由振动振动,排架作自由振动振动一周后,柱顶侧移为一周后,柱顶侧移为0.54cm0.54cm,试求排架的阻尼比及振动试求排架的阻尼比及振动1010周后,柱顶的振幅周后,柱顶的振幅y y1010EAmP解:解:1 1、求阻尼比、求阻尼比10ln21yy54.06.0ln21=0.01682 2、求、求 y10100ln21yynn=10nyy2ln10020lnln010yy=ln0.6 200.0168y10=0.21 cm振动振动10周后的振幅为周后的振幅为0.21 cm2021/3/11209.3 单自由度体系在简谐荷载作用下的动力计算单自由度体系在简谐荷载作用下的动力计算一、简谐荷载作用下结构的动力反应(无阻尼)一、简谐荷载作用下结构的动力反应(无阻尼)ymkP(t)ymkP(t)mkymP(t)1 1、简谐荷载作用下方程的解答、简谐荷载作用下方程的解答设设 P(t)=P sint 简谐荷载的圆频率简谐荷载的圆频率P 荷载的最大值,也称荷载的幅值荷载的最大值,也称荷载的幅值取取mm为对象,列平衡方程:为对象,列平衡方程:m +k y=P(t)mk将代入得运动方程:代入得运动方程:tmPyysin2 方程的统解为:方程的统解为:tmPtmPtysin)(sin)()(2222按自振频率振动按自振频率振动的自振的自振按荷载频率振动按荷载频率振动的强迫振动的强迫振动 自振和强迫振动并存的阶段称为过渡阶自振和强迫振动并存的阶段称为过渡阶段,因实际阻尼存在,其后只有强迫振动,段,因实际阻尼存在,其后只有强迫振动,这个阶段称为这个阶段称为稳态阶段稳态阶段。

稳态阶段的振幅稳态阶段的振幅和频率都是恒定的和频率都是恒定的2021/3/11212 2、简谐荷载的动力系数、简谐荷载的动力系数稳态阶段任一时刻的位移为:稳态阶段任一时刻的位移为:tmPtysin)()(22tmPsin11222由于由于mk112111mjyPmP112 yj 为把干扰力的幅值为把干扰力的幅值P视为静力荷载,作用于体系时视为静力荷载,作用于体系时而产生的位移,把它称为而产生的位移,把它称为最大静位移最大静位移称为位移动力系数或放大系数称为位移动力系数或放大系数所以:所以:y(t)=yj sint令令22112021/3/1122 计算单自由度体系在动荷载作用下的强迫振动时,均要先求计算单自由度体系在动荷载作用下的强迫振动时,均要先求出体系的自振频率,再计算动位移和动内力出体系的自振频率,再计算动位移和动内力y(t)max=yj 对于动内力,当动荷载沿振动方向作用于质体上时,内力动对于动内力,当动荷载沿振动方向作用于质体上时,内力动力系数与位移动力系数相同力系数与位移动力系数相同即先按静力方法计算即先按静力方法计算 yj,再计算动力系数,再计算动力系数,就可求出振幅就可求出振幅。

例如动力弯矩的计算式为:例如动力弯矩的计算式为:M(t)max=Mj=P MMj 为荷载幅值为荷载幅值P 作为静力荷载作用时结构的弯矩;作为静力荷载作用时结构的弯矩;M 为单位力沿质体振动方向作用时的弯矩为单位力沿质体振动方向作用时的弯矩2021/3/1123 3 3、当、当值接近值接近时,动力系数将急剧增大,时,动力系数将急剧增大,=时所发生时所发生的振动现象称为的振动现象称为共振共振共振对体系来说是很危险的,有时会使结构产生破共振对体系来说是很危险的,有时会使结构产生破坏作用,应尽量避免坏作用,应尽量避免1 1、当、当与与相差较大时,即动力荷载的频率和自振频率相相差较大时,即动力荷载的频率和自振频率相差较大时,可将动力荷载视为静力荷载差较大时,可将动力荷载视为静力荷载结构在简谐荷载作用下无阻尼稳态振动的一些性质:结构在简谐荷载作用下无阻尼稳态振动的一些性质:2211动力系数动力系数2、当、当0 /1时,时,随随/的增大而增大的增大而增大突加荷载作用下的位移解答为:突加荷载作用下的位移解答为:y(t)=yj(1 cost)动力系数为:动力系数为:=22021/3/1124 例:如图所示简支梁,截面惯性矩例:如图所示简支梁,截面惯性矩 I=11626cmI=11626cm4 4,抗弯截面系数,抗弯截面系数W=W=726.7cm726.7cm3 3,弹性模量,弹性模量E=2.1E=2.110108 8 kPakPa。

跨度中间有重量跨度中间有重量Q=40kNQ=40kN的电动的电动机,转速机,转速n=400 r/minn=400 r/min由于偏心,由于偏心,转动时产生离心力转动时产生离心力P=20kNP=20kN,离心力,离心力的竖向分力为的竖向分力为PsintPsint,忽略梁本身质,忽略梁本身质量,求梁在上述简谐荷载作用下的动量,求梁在上述简谐荷载作用下的动力系数和最大正应力力系数和最大正应力PsintQEI2.5m2.5m解:解:1 1、计算梁的自振频率、计算梁的自振频率348QlEIgWg3885401011626101.2488.9=47.93 l/s2 2、计算简谐荷载的频率、计算简谐荷载的频率6040014.32602n=41.89 l/s所以动力系数所以动力系数23.411223 3、计算跨中截面最大正应力、计算跨中截面最大正应力 由电机重量产生的最大正应力和由电机重量产生的最大正应力和简谐荷载产生的最大动应力组成简谐荷载产生的最大动应力组成6107.72645)2023.440(=21.43104 kPaWPlWQl442021/3/1125二、阻尼对受简谐荷载强迫振动的影响二、阻尼对受简谐荷载强迫振动的影响稳态阶段任一时刻的动力位移为:稳态阶段任一时刻的动力位移为:y(t)=Asin(t )式中:式中:A 振幅振幅 振幅与动载振幅与动载P之间的相位差之间的相位差A=yj动力系数计算式:动力系数计算式:动力系数与干扰力频率、结构的自振频率及阻尼有关!动力系数与干扰力频率、结构的自振频率及阻尼有关!2222224)1(12021/3/1126讨论讨论/值不同的几种情况值不同的几种情况(P283)1)(=0)表明质量表明质量mm接近不动或只作极微小的振动。

接近不动或只作极微小的振动3 3)接近接近时,时,值增加很快,这时阻尼对值增加很快,这时阻尼对值值有很大影响有很大影响在在0.75/1.25(习惯上称为共振区)的范围内,(习惯上称为共振区)的范围内,阻尼大大减少了动位移而在此范围外,可按无阻阻尼大大减少了动位移而在此范围外,可按无阻尼计算2222224)1(12021/3/1127 例:已知外伸梁端部作用自重为W=20kN,干扰力psint的频率为=62.8 1/s,P=2kN,EI=24.5106 Nm2,梁长L=6m,试求集中质量处最大位移和最大弯矩WLL/2psint解:1、计算集中质量处最大位移求自振频率:P=13NmEI/10102.1105.24272766111631109.2110102.110208.9sWg动力系数:127.01111222209.218.62最大位移:mmpy28.010102.1102127.06311max)(32.2211maxmaxmmWy2、计算最大弯矩_maxMWMpM=(0.1272+20)3=60.762 kNm2021/3/1128 例:如图所示刚架,电机与横梁总质量例:如图所示刚架,电机与横梁总质量m=1tm=1t,柱,柱EI=5EI=510104 4kNmkNm2 2,柱重不计,动荷载,柱重不计,动荷载P(t)=2kNsintP(t)=2kNsint,电机转速电机转速n=720n=720转转/分,阻尼比分,阻尼比=0.10=0.10。

求:求:(1 1)稳态振动时的振幅及动力弯矩图;(稳态振动时的振幅及动力弯矩图;(2 2)若改变电机)若改变电机转速至发生共振,并控制动力系数转速至发生共振,并控制动力系数 22,试确定阻,试确定阻尼比尼比的大小3m4mEIEI=P(t)m解:解:1 1、求自振频率、求自振频率312hEIk 刚架柱顶侧移刚度刚架柱顶侧移刚度mkN/104.94105123341104.93mk=96.8 l/s荷载频率荷载频率 =2n/60=75.4 l/s动力系数动力系数2222224)1(1=2.36荷载幅值作用下柱顶水平静位移荷载幅值作用下柱顶水平静位移mkPyj41013.2振幅振幅 A=yj=0.5 mm1222M(t)max=PM=4.72MM9.459.459.45 由于强迫力沿振动方向作用于质体上,由于强迫力沿振动方向作用于质体上,故内力动力系数和位移动力系数相同故内力动力系数和位移动力系数相同2021/3/11292 2、共振时,、共振时,/=1/=1动力系数:动力系数:=1/2则阻尼比:则阻尼比:=1/2欲使欲使 2 1/2=0.252021/3/11309.6 多自由度体系的自由振动多自由度体系的自由振动一、两个自由度体系的自由振动一、两个自由度体系的自由振动1 1、运动方程的建立、运动方程的建立1)柔度法)柔度法0221211111ymymy0222211212ymymy2)刚度法)刚度法021211111ykykym022212122ykykym2021/3/11311 1)柔度法求自振频率)柔度法求自振频率频率方程为:频率方程为:2222211122211111mmmm=0频率参数:频率参数:212221121222211122211124211mmmmmmm1m211112112222 2、频率方程和自振频率、频率方程和自振频率 其中较小的一个,以其中较小的一个,以 1表示,称为第一频率或基本频表示,称为第一频率或基本频率;另一个以率;另一个以 2表示,称为第二频率。

表示,称为第二频率2021/3/11322 2)刚度法求自振频率)刚度法求自振频率频率方程为:频率方程为:0222221122111mkkkmk频率:频率:212122211222211122221112421mmkkkmkmkmkmkkij 的物理意义:同第的物理意义:同第6章章2021/3/1133 例:图示简支梁,质量集中在例:图示简支梁,质量集中在m1和和m2上,上,m1=m2=m,EI=常数,求自振频率常数,求自振频率m1m2L/4L/4L/2EI解:解:1 1、作单位弯矩图,计算柔度系数、作单位弯矩图,计算柔度系数113L/163L/16由图乘法可得:由图乘法可得:EIl768732112EIl2563322112 2、将柔度系数代入公式得:、将柔度系数代入公式得:EImlm48312111EImlm384322112自振频率:自振频率:31193.61mlEI3226.191mlEI2021/3/11343 3、主振型及主振型正交性、主振型及主振型正交性1 1)、主振型)、主振型 n 个自由度体系具有个自由度体系具有n个自振频率当体系(即所个自振频率当体系(即所有质点)按某一自振频率作自由振动时,各质点位有质点)按某一自振频率作自由振动时,各质点位移振幅之间的比值保持不变,这种特殊的振动形式移振幅之间的比值保持不变,这种特殊的振动形式称为主振型或振型。

称为主振型或振型121121211112122122mmmmYY 在特定的初始条件下,两个质点在特定的初始条件下,两个质点m1 、m2按频率按频率1或或2作简谐振动,位移作简谐振动,位移y1 、y2的比值保持为常数的比值保持为常数2021/3/1135当当=1时的振型称为第一主振型或基本振型时的振型称为第一主振型或基本振型2111112122111mmYY或或12111122111mkkYY当当=2时的振型称为第二主振型时的振型称为第二主振型2211112122212mmYY或或12211122212mkkYYYij两个下标的意义:两个下标的意义:第第一个下标一个下标i表示质点的序号;第二个下标表示质点的序号;第二个下标j 表示频率的序表示频率的序号,或振型的序号号,或振型的序号如如Y12表示按第二频率(表示按第二频率(=2)振动时,质点)振动时,质点1(m1)的)的最大位移最大位移注意:注意:体系能否按某一振型作自由振动由初始条件决定;体系能否按某一振型作自由振动由初始条件决定;但主振型的形式则和频率一样但主振型的形式则和频率一样 ,与初始条件无关,而是完,与初始条件无关,而是完全由体系本身的动力特性所决定。

全由体系本身的动力特性所决定2021/3/11362 2)主振型的正交性)主振型的正交性 对于同一多自由度体系来说,各个主振型之间存在对于同一多自由度体系来说,各个主振型之间存在正交性,这是多自由度体系的重要动力特性正交性,这是多自由度体系的重要动力特性当当 1不等于不等于 2时,恒有:时,恒有:m1Y11Y12+m2Y21Y22=0 即质量与对应的两个主振型振幅的连乘积的代数即质量与对应的两个主振型振幅的连乘积的代数和为零2021/3/1137 例:试确定上例体系的主振例:试确定上例体系的主振型,并验证主振型的正交性型,并验证主振型的正交性mmL/4L/4L/2EI解:由前面求得:EImlEIml3841481322321EIlEIl7697,25633123112111112122111mmYY2211112122212mmYY14825637687333EImlEImlEIml=-1111-1主振型形状:验证正交性:m1Y11Y12+m2Y21Y22=m11+m1(-1)=02021/3/1138例:求图示体系的自振频率和主振型例:求图示体系的自振频率和主振型aaaEIm解:解:1、作单位弯矩图,求、作单位弯矩图,求i jP=1a/2P=1aa/2a/2EIa6311EIa2322021122、求自振频率、求自振频率212221121222211122211124211mmmmmmEIma231EIma63231121maEI所以:32261maEI2021/3/11392、求主振型、求主振型2111112122111mmYY2211112122212mmYY=0=0只有水平振动只有竖向振动2021/3/1140 例:如图所示刚架,各柱EI=常数,设横梁EI=,质量集中在横梁上、且m1=m2=m,求刚架水平振动时的自振频率和振型,并验证主振型的正交性。

EIm2hEIm1h1、计算结构的刚度系数m2m11k21k11m2m11k22k12m1k11312hEI312hEI312hEI312hEIm2k21312hEI312hEI由平衡条件求得:31148hEIk32124hEIk31224hEIk32224hEIk代入公式得:31028.3mhEI32927.7mhEI2021/3/1141主振型:12111122111mkkYY12211122212mkkYY618.11618.01验证主振型的正交性:0)618.0(618.1112221212111mmYYmYYm2021/3/1142 例例2:求图示梁的自振频率与主振:求图示梁的自振频率与主振型m=1t,E=2107N/cm2,I=2104cm4EImm2m2m2m2m11EI13/163/83/813/16111M1图图1M2图图基本体系基本体系M1图图解:解:1 1、求自振频率、求自振频率EI24232211EI832112mEI866.01=173.2 l/smEI31.12=261.86 l/s2 2、求主振型、求主振型2111112122111mmYY11=2211112122212mmYY112021/3/11432111112122111mmYY11=2211112122212mmYY11Y11Y2111Y11Y2111第一主振型第二主振型2021/3/1144 练习1:图示单自由度动力体系自振周期的关系为();A(a)=(b);B(a)=(c);C(b)=(c);D都不等。

ml/2l/2EI(a)(b)ml/2l/2EImEI(c)ll2222解:112mT 答案:A2021/3/1145 练习2:图示体系杆的质量不计,EI1=,体系自振频率等于()选择题)mlEIA3)(mlEIhB31)(mlEIhC2)(mlEIhB31)(EI1=EI L hhP=1h解:EIlhhlhEI332211211mlEIh31答案:B2021/3/1146 练习2:已知:=0.5(为自振频率),EI=常数,不计阻尼杆长均为L求图示体系稳态阶段,A点的动位移幅值EImEIEI=0APsintoo解:34112211maxPyyj33311241212lEIlEIlEIkEIPlEIlPy18243433maxA点的动位移幅值:。

下载提示
相关文档
正为您匹配相似的精品文档