文档详情

探究3交通运输问题13

沈***
实名认证
店铺
DOC
54.50KB
约5页
文档ID:152626897
探究3交通运输问题13_第1页
1/5

8.3实际问题与二元一次方程组(3)的教学设计授课教师马春艳科目数学课型新授课教材版本人教版年级(册)七年级(下册)课题名称 8.3实际问题与二元一次方程组(3)教材分析本节课是实际问题与二元一次方程组第三节,主要是通过学生对探究三的自主探究,进一步强化学生利用建立方程组模型解决实际问题的能力,使学生进一步体会数学建模的思想,提高把实际问题转化成数学问题的数学建模意识,提高学生分析解决具有复杂数量关系实际问题的能力学情分析教学对象是七年级学生,在学习本节前,学生已经掌握了用字母表示数、列简单代数式,会把一些简单的实际问题中的数量关系用代数式表示出来,并会进行整式加减运算,对二元一次方程(组)有了全面系统地认识;学生还掌握了用一元一次方程解决实际问题,以及二元一次方程组的解法,初步具有了一定的数学建模能力教学理念采用探究式的教学方法,教师着眼于“引”,学生思考解决问题,发现数学问题中蕴含的知识;学生着眼于“探”,探究问题,合作学习,广泛交流,归纳出知识,并学会运用教学目标1.会用列表法分析应用题中的数量关系,列出相应的二元一次方程组解决较复杂的实际问题2.学会通过图表获取信息的方法,进一步感受间接设未知数来解决问题的解题策略。

1、教学重、难点教学重点用列会用列表的方法分析题目中的各个量的关系,列出二元一次方程组教学难点从图表中获取有用信息,借助列表分析问题中所蕴含的数量关系教法教无定法,教学有法,贵在得法结合本段教材特点和七年级学生的年龄特点、学生的学习基础,我选择的教法是启发、引导探究、练习相结合的方法,整堂课以教师为主导,学生为主体,教师启发点拨、自主探究、合作交流并参与学生的学习,给学生创造充分从事数学活动的机会,提供揭示数学规律的环境教学过程设计教学环节教师活动学生活动设计理念一创设情境,引入新 课前面我们利用二元一次方程组解决了许多实际问题,这些问题的条件是用文字语言给出的在解决实际问题的过程中,体现的是方程组是解决实际问题的重要模型还有些问题,条件是由文字、图表共同给出,这就需要我们能读懂图表,像在我们日常生活中,我们会多次接触到铁路运输、公路运输费用等问题,我们该如何解决呢?1、 公路的运价为1.5元/(t·km),里程为10km,货物重量为200吨,则公路运费=1.5×10 ×200 元教师读题后提出元/(t·km)表示的意义是什么?2、 铁路的运价为1.2元/(吨·千米),原料重量为m吨,里程为20km,则铁路运费=1.2×20m元。

总结:货物运费=单价×路程×重量回答:元/(t·km)表示的意义思考、填空为下面探究3,用二元一次方程组解决实际问题做铺垫二探究分析,解决问题探究3:长青化工厂与A,B两地有公路,铁路相连,这家工厂从A地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B地已知公路的运价为1.5元/(t·km),铁路的运价为1.2元/(t·km),且这两次运输共支出公路运费15000元,铁路运费97200元,这批产品的销售款比原料费与运输费的和多多少元?(图见教材图8.3-2)问题1:要求“这批产品的销售款比原料费与运输费的和多多少元?”我们必须知道什么?销售款-(原料费+运输费)问题2:产品的销售款,原料费与哪些量有关系?是什么关系?销售款=产品单价×产品数量原料费=原料单价×原料数量问题3:这些量中,哪些是已知量?哪些是未知量?因此需要先求出产品数量和原料数量设产品重x吨,原料重y吨填写下表分析数量关系产品x吨原料y吨合计公路运费(元)铁路运费(元)价值(元)问题4:你发现等量关系了吗?如何列方程组求解?1.5×(20x+10y)=150001.2×(110x+120y)=97200∴解这个方程组得:x=300y=400问题5:这个实际问题的答案是什么?销售款-(原料费+运输费)=8000×300-(1000×400+15000+97200)=1887800(元)教师引导学生回顾解决此题的方法:合理设定未知数,列表分析题中数量关系,找出相等关系,列出方程。

教师强调间接设未知数的方法教师强调会利用列表格的形式分析信息量较大的实际问题,使问题清楚化、简答化、容易化学生思考回答掌握间接设未知数的方法学生观察图表,用代数式表示图中各量,再根据相等关系列出方程本例所涉及的数据较多,数量关系较为复杂,具有一定挑战性,能激发学生探索的热情通过教师引导让学生认识到合理设定未知数的意义问题中的一些条件是用示意图给出的,这种表达形式比较简明,很实用,通过分析这个问题,可以培养学生从图表中获取信息的能力,通过表格对数量关系进行整理,从而发现等量关系三课堂练习,反馈调控1、 一批蔬菜要运往某批发市场,菜农准备租用汽车公司的甲、乙两种货车已知过去两次租用这两种货车的记录如下表所示甲种货车(辆)乙种货车(辆)总量(吨)第1次4528.5第2次3627这批蔬菜需租用5辆甲种货车、2辆乙种货车刚好一次运完,如果每吨付20元运费,问:菜农应付运费多少元?2、某水产养殖加工厂有210名工人,每名工人每天平均捕捞水产品50千克或将当日捕捞的水产品40千克进行精加工,已知每千克水产品直接出售可获利润6元,精加工后再出售,可获利润18元,如果每天精加工的水产品和未来得及精加工的水产品全部出售,可获得的最大利润是109620元,那么应如何安排工人才能使养殖加工厂获得最大利润呢?要求:用列表格的形式分析问题。

学生先独立思考,设出未知数,再根据相等关系列出方程组然后,再在小组里讨论最后找学生到黑板讲解,教师评出小组得分继续培养用数学方法解决实际问题的能力,会找等量关系,结合实际,激发学生的学习兴趣加深问题难度,巩固应用二元一次方程组解决实际问题的方法,进一步提高学生分析问题、解决问题的能力四师生互动 ,归纳小结通过这节课的学习,你学到了哪些知识?老师整理总结1、 理解运费单价:元/(吨·千米)2、 掌握间接设未知数解决问题的方法3、 解决信息量较大的实际问题,可以借助表格解决问题各抒己见,谈出自己本节课的收获、感想通过谈谈自己收获培养学生的语言表达能力,总结列表格和间接设未知数的方法,降低问题难度五布置作业,知识延伸习题8.3第5、6、7题学生课后独立完成通过课后作业,教师及时了解学生对本节知识的掌握情况,知识延伸,使学生能力得以提高板书设计8.3实际问题与二元一次方程组(3)探究3 元/(t·km) 练习板 解题过程 销售款—(原料费+运输费) 销售款=产品单价×产品数量原料费=原料单价×原料数量 运输费=铁路运费+公路运费 教学反思 1.自己的表情不够丰富,不够洒脱,不够自如,要大力的听课,多参加这样的活动; 2.练习2的讨论时间再长点,学生会设计出更多的列表方法。

3.收尾太仓促,可以多展示几组学生的成果. 。

下载提示
相关文档
正为您匹配相似的精品文档