文档详情

高等数学中求导法则课件

沈***
实名认证
店铺
PPT
792KB
约28页
文档ID:153982484
高等数学中求导法则课件_第1页
1/28

高等数学中求导法则第二节二、反函数的求导法则二、反函数的求导法则 三、复合函数求导法则三、复合函数求导法则 四、初等函数的求导问题四、初等函数的求导问题 一、四则运算求导法则一、四则运算求导法则 机动 目录 上页 下页 返回 结束 函数的求导法则 第二章 高等数学中求导法则思路思路:xxfxxfxfx)()(lim)(0(构造性定义)求导法则求导法则其它基本初等其它基本初等函数求导公式函数求导公式0 xcosx1)(C)sin(x)ln(x证明中利用了两个重要极限初等函数求导问题初等函数求导问题本节内容机动 目录 上页 下页 返回 结束 高等数学中求导法则一、四则运算求导法则一、四则运算求导法则 定理定理1.具有导数都在及函数xxvvxuu)()()()(xvxu及的和、差、积、商(除分母为 0的点外)都在点 x 可导,且)()()()()1(xvxuxvxu)()()()()()()2(xvxuxvxuxvxu)()()()()()()()3(2xvxvxuxvxuxvxu下面分三部分加以证明,并同时给出相应的推论和例题.)0)(xv机动 目录 上页 下页 返回 结束 高等数学中求导法则此法则可推广到任意有限项的情形.证证:设,则vuvu)()1()()()(xvxuxfhxfhxfxfh)()(lim)(0hxvxuhxvhxuh)()()()(lim0hxuhxuh)()(lim0hxvhxvh)()(lim0)()(xvxu故结论成立.wvuwvu)(,例如机动 目录 上页 下页 返回 结束 例如,高等数学中求导法则(2)vuvuvu)(证证:设,)()()(xvxuxf则有hxfhxfxfh)()(lim)(0hxvxuhxvhxuh)()()()(lim0故结论成立.)()()()(xvxuxvxuhhxuh )(lim0)(xu)(hxvhxv)()(xu)(hxv推论推论:)()1uC)()2wvuuC wvuwvuwvu)log()3xaaxlnlnaxln1机动 目录 上页 下页 返回 结束(C为常数)高等数学中求导法则例例1.解解:xsin41(21)1sin,)1sincos4(3xxxy.1xyy 及求 y)(xx)1sincos4(213xxx23(xx)1xy1cos4)1sin43(1cos21sin2727)1sincos4(3xx)1sincos4(3xx机动 目录 上页 下页 返回 结束 高等数学中求导法则)()(lim0 xvhxvh)()()()()()(xvhxvhxvxuxvhxuh)()(xvxu(3)2vvuvuvu证证:设)(xf则有hxfhxfxfh)()(lim)(0hh lim0,)()(xvxu)()(hxvhxu)()(xvxuhhxu )()(xu)(xvhhxv )()(xu)(xv故结论成立.)()()()()(2xvxvxuxvxu推论推论:2vvCvC机动 目录 上页 下页 返回 结束(C为常数)高等数学中求导法则)(cscxxsin1x2sin)(sinxx2sin例例2.求证,sec)(tan2xx证证:.cotcsc)(cscxxxxxxcossin)(tan x2cosxx cos)(sin)(cossinxx x2cosx2cosx2sinx2secxcosxxcotcsc类似可证:,csc)(cot2xx.tansec)(secxxx机动 目录 上页 下页 返回 结束 高等数学中求导法则 )(xf二、反函数的求导法则二、反函数的求导法则 定理定理2.y 的某邻域内单调可导,证证:在 x 处给增量由反函数的单调性知且由反函数的连续性知 因此,)()(1的反函数为设yfxxfy在)(1yf0)(1yf且 ddxy或,0 x)()(xfxxfy,0 xyyx,00yx时必有xyxfx0lim)(lim0yyxyxdd 1)(1yf11)(1yf11机动 目录 上页 下页 返回 结束 高等数学中求导法则1例例3.求反三角函数及指数函数的导数.解解:1)设,arcsin xy 则,sin yx,)2,2(y)(arcsinx)(sinyycos1y2sin11211x类似可求得?)(arccosx,11)(arctan2xx211)arccot(xx211xxxarcsin2arccos利用0cosy,则机动 目录 上页 下页 返回 结束 高等数学中求导法则2)设,)1,0(aaayx则),0(,logyyxa)(xa)(log1ya 1ayln1aylnaaxlnxxe)e()arcsin(x211x)arccos(x211x)arctan(x211x)cotarc(x211xaaaxxln)(xxe)e(特别当ea时,小结小结:机动 目录 上页 下页 返回 结束 高等数学中求导法则在点 x 可导,lim0 xxuxuuf)(xyxyx0limdd三、复合函数求导法则三、复合函数求导法则定理定理3.)(xgu)(ufy 在点)(xgu 可导复合函数 fy)(xg且)()(ddxgufxy在点 x 可导,证证:)(ufy 在点 u 可导,故)(lim0ufuyuuuufy)((当 时 )0u0故有)()(xgufuy)(uf)0()(xxuxuufxy机动 目录 上页 下页 返回 结束)(xgu 高等数学中求导法则例如,)(,)(,)(xvvuufyxydd)()()(xvufyuvxuyddvuddxvdd关键:搞清复合函数结构,由外向内逐层求导.推广推广:此法则可推广到多个中间变量的情形.机动 目录 上页 下页 返回 结束 高等数学中求导法则例例5.设,)cos(lnxey 求.ddxy解解:xydd)cos(1xe)sin(xexe)tan(xxee思考思考:若)(uf 存在,如何求)cos(lnxef的导数?xfdd)cos(ln(xef)cos(lnxe)cos(ln)(xeuuf这两个记号含义不同机动 目录 上页 下页 返回 结束 高等数学中求导法则例例6.设,)1(sin2xxy.y求解解:y1cos2xx11212xx2机动 目录 上页 下页 返回 结束 1cos2xx112xx高等数学中求导法则四、初等函数的求导问题四、初等函数的求导问题 1.常数和基本初等函数的导数(P100-101)(C0)(x1x)(sin xxcos)(cosxxsin)(tan xx2sec)(cot xx2csc)(secxxxtansec)(cscxxxcotcsc)(xaaaxln)(xexe)(log xaaxln1)(ln xx1)(arcsin x211x)(arccosx211x)(arctanx211x)cot(arcx211x机动 目录 上页 下页 返回 结束 高等数学中求导法则2.有限次四则运算的求导法则)(vuvu)(uCuC )(vuvuvuvu2vvuvu(C为常数)0(v3.复合函数求导法则)(,)(xuufyxydd)()(xuf4.初等函数在定义区间内可导初等函数在定义区间内可导,uyddxudd且导数仍为初等函数且导数仍为初等函数机动 目录 上页 下页 返回 结束 高等数学中求导法则例例7.求解解:,1111xxxxy.y21222xxy12xx1 y1212x)2(x112xx例例8.设),0(aaaxyxaaaxa解解:1aaaxayaaaxln1axaaaxaln求.yaaxln机动 目录 上页 下页 返回 结束 高等数学中求导法则例例9.求解解:,1arctan2sin2xeyx.y1arctan)(2xy)(2sin xe2sin xe2cosxx221x1212xx2x21arctan2x2sin xe2cos x2sin xe112xx关键关键:搞清复合函数结构 由外向内逐层求导机动 目录 上页 下页 返回 结束 高等数学中求导法则例例10.设求,1111ln411arctan21222xxxy.y解解:y22)1(1121x21xx)11ln()11ln(22xx111412x21xx1112x21xx2121xx221x21x231)2(1xxx机动 目录 上页 下页 返回 结束 高等数学中求导法则备用题备用题 1.设 yxxxx2sec12csc41232,2tan2cotxxy解:解:2csc2xx2sec2x2121)121(23x2.设,)(xfffy 解解:)(fy)(xff)(f)(xf)(xf 其中)(xf可导,求.y求.y机动 目录 上页 下页 返回 结束 高等数学中求导法则22观察函数,)4(1)1(23xexxxy方法方法:先在方程两边取对数,对数求导法对数求导法-适用范围适用范围:.)()(的情形数多个函数相乘和幂指函xvxu二、对数求导法.sinxxy 然后利用求导方法求出导数.高等数学中求导法则23 1)对幂指函数0,uuyv可用对数求导法求导:uvylnlnyy1uv lnuvu)ln(uvuuvuyvvuuyvlnuuvv1说明说明:按指数函数求导公式按幂函数求导公式注意注意:高等数学中求导法则24例例1.)0(sinxxyx.解解:两边取对数,化为对隐式求导数 xxylnsinln两边对 x 求导yy1xx lncos xxsin)sinlncos(sinxxxxxyx求.y高等数学中求导法则25例例3)4)(3()2)(1(xxxxyuuu)ln(21lny对 x 求导21yy)4)(3()2)(1(21xxxxy41312111xxxx两边取对数2ln1lnxx4ln3lnxx11x21x31x41xuuuuuuu)ln(ln0求.y高等数学中求导法则4,321xxxx或或定义域:高等数学中求导法则 三、相关变化率三、相关变化率)(,)(tyytxx为两可导函数yx,之间有联系tytxdd,dd之间也有联系称为相关变化率相关变化率相关变化率问题解法:找出相关变量的关系式对 t 求导得相关变化率之间的一般关系式问题:利用其中一个变化率求出未知的相关变化率机动 目录 上页 下页 返回 结束 高等数学中求导法则例例7.一气球从离开观察员500 m 处离地面铅直上升,其速率为,minm140当气球高度为 500 m 时,观察员视线的仰角增加率是多少?500h解解:设气球上升 t 分后其高度为h,仰角为,则tan500h两边对 t 求导2sectddthdd5001已知,minm140ddth h=500m 时,1tan22tan1sec,2sec2tdd14050012114.0)minrad/(机动 目录 上页 下页 返回 结束 。

下载提示
相关文档
正为您匹配相似的精品文档