目录 上页 下页 返回 结束),(yxfy 可降阶高阶微分方程 第六节(5))()(xfyn),(yyfy 第三章 目录 上页 下页 返回 结束 一、一、)()(xfyn令,)1(nyz)(ddnyxz则因此1d)(Cxxfz即1)1(d)(Cxxfyn同理可得2)2(d Cxyn1d)(Cxxfxd xxfd)(依次通过 n 次积分,可得含 n 个任意常数的通解.,)(xf21CxC型的微分方程型的微分方程 目录 上页 下页 返回 结束 例例1.cose2xyx 求解解解:12dcoseCxxyx 12sine21Cxxxy2e41xy2e811121CC此处xsin21xC32CxCxcos21CxC目录 上页 下页 返回 结束 tFO,00tx例例2.质量为 m 的质点受力F 的作用沿 Ox 轴作直线运动,在开始时刻,)0(0FF随着时间的增大,此力 F 均匀地减直到 t=T 时 F(T)=0.如果开始时质点在原点,解解:据题意有)(dd22tFtxm0dd0ttx)1(0TtFt=0 时设力 F 仅是时间 t 的函数:F=F(t).小,求质点的运动规律.初速度为0,且对方程两边积分,得)(tF)1(dd022TtmFtx0FT目录 上页 下页 返回 结束 120)2(ddCTttmFtx利用初始条件,01C得于是)2(dd20TttmFtx两边再积分得2320)62(CTttmFx再利用00tx,02C得故所求质点运动规律为)3(2320TttmFx0dd0ttx目录 上页 下页 返回 结束),(yxfy 型的微分方程型的微分方程 设,)(xpy,py 则原方程化为一阶方程),(pxfp 设其通解为),(1Cxp则得),(1Cxy再一次积分,得原方程的通解21d),(CxCxy二、二、目录 上页 下页 返回 结束 例例3.求解yxyx 2)1(2,10 xy3 0 xy解解:),(xpy 设,py 则代入方程得pxpx2)1(2分离变量)1(d2d2xxxpp积分得,ln)1(lnln12Cxp)1(21xCp即,3 0 xy利用,31C得于是有)1(32xy两端再积分得233Cxxy利用,10 xy,12C得133xxy因此所求特解为目录 上页 下页 返回 结束 三、三、),(yyfy 型的微分方程型的微分方程 令),(ypy xpydd 则xyypddddyppdd故方程化为),(ddpyfypp设其通解为),(1Cyp即得),(1Cyy分离变量后积分,得原方程的通解21),(dCxCyy目录 上页 下页 返回 结束 例例5.求解.02 yyy代入方程得,0dd2 pyppyyyppdd即两端积分得,lnlnln1Cyp,1yCp 即yCy1(一阶线性齐次方程)故所求通解为xCCy1e2解解:),(ypy 设xpydd 则xyypddddyppdd目录 上页 下页 返回 结束 例例7.解初值问题解解:令0e2 yy,00 xy10 xy),(ypy,ddyppy 则代入方程得yppyded2积分得1221221eCpy利用初始条件,0100 xyyp,01C得根据ypxyedd积分得,e2Cxy,00 xy再由12C得故所求特解为xye1得目录 上页 下页 返回 结束 思考与练习思考与练习1.方程)(yfy 如何代换求解?答答:令)(xpy 或)(ypy 一般说,用前者方便些.均可.有时用后者方便.例如,2)(eyy 2.解二阶可降阶微分方程初值问题需注意哪些问题?答答:(1)一般情况,边解边定常数计算简便.(2)遇到开平方时,要根据题意确定正负号.3.求微分方程方程2 2()0y yy的通解?。