2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标即:方程有实数根函数的图象与轴有交点函数有零点.3、函数零点的求法:求函数的零点: (代数法)求方程的实数根; (几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.4、二次函数的零点:二次函数.1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.3)△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.高中数学 必修2知识点第一章 空间几何体1.1柱、锥、台、球的结构特征1.2空间几何体的三视图和直观图1 三视图: 正视图:从前往后 侧视图:从左往右 俯视图:从上往下2 画三视图的原则: 长对齐、高对齐、宽相等3直观图:斜二测画法4斜二测画法的步骤:(1).平行于坐标轴的线依然平行于坐标轴;(2).平行于y轴的线长度变半,平行于x,z轴的线长度不变;(3).画法要写好。
5 用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图1.3 空间几何体的表面积与体积(一 )空间几何体的表面积1棱柱、棱锥的表面积: 各个面面积之和2 圆柱的表面积 3 圆锥的表面积4 圆台的表面积 5 球的表面积(二)空间几何体的体积1柱体的体积 2锥体的体积 3台体的体积 4球体的体积 DCBAα第二章 直线与平面的位置关系2.1空间点、直线、平面之间的位置关系2.1.11 平面含义:平面是无限延展的2 平面的画法及表示(1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(如图)(2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC、平面ABCD等3 三个公理:(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内符号表示为LA·αA∈LB∈L => L αA∈αB∈α公理1作用:判断直线是否在平面内C·B·A·α(2)公理2:过不在一条直线上的三点,有且只有一个平面。
符号表示为:A、B、C三点不共线 => 有且只有一个平面α,使A∈α、B∈α、C∈α公理2作用:确定一个平面的依据3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线P·αLβ符号表示为:P∈α∩β =>α∩β=L,且P∈L公理3作用:判定两个平面是否相交的依据2.1.2 空间中直线与直线之间的位置关系1 空间的两条直线有如下三种关系:共面直线 相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线: 不同在任何一个平面内,没有公共点2 公理4:平行于同一条直线的两条直线互相平行符号表示为:设a、b、c是三条直线=>a∥ca∥bc∥b强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用公理4作用:判断空间两条直线平行的依据3 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补4 注意点:① a'与b'所成的角的大小只由a、b的相互位置来确定,与O的选择无关,为简便,点O一般取在两直线中的一条上;② 两条异面直线所成的角θ∈(0, );③ 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a⊥b;④ 两条直线互相垂直,有共面垂直与异面垂直两种情形;⑤ 计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。
2.1.3 — 2.1.4 空间中直线与平面、平面与平面之间的位置关系1、直线与平面有三种位置关系:(1)直线在平面内 —— 有无数个公共点(2)直线与平面相交 —— 有且只有一个公共点(3)直线在平面平行 —— 没有公共点指出:直线与平面相交或平行的情况统称为直线在平面外,可用a α来表示a α a∩α=A a∥α2.2.直线、平面平行的判定及其性质2.2.1 直线与平面平行的判定1、直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行简记为:线线平行,则线面平行符号表示:a αb β => a∥αa∥b2.2.2 平面与平面平行的判定1、两个平面平行的判定定理:一个平面内的两条交直线与另一个平面平行,则这两个平面平行符号表示:a βb βa∩b = P β∥αa∥αb∥α2、判断两平面平行的方法有三种:(1)用定义;(2)判定定理;(3)垂直于同一条直线的两个平面平行2.2.3 — 2.2.4直线与平面、平面与平面平行的性质1、定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。
简记为:线面平行则线线平行符号表示:a∥αa β a∥bα∩β= b作用:利用该定理可解决直线间的平行问题2、定理:如果两个平面同时与第三个平面相交,那么它们的交线平行符号表示:α∥βα∩γ= a a∥b β∩γ= b作用:可以由平面与平面平行得出直线与直线平行2.3直线、平面垂直的判定及其性质2.3.1直线与平面垂直的判定1、定义如果直线L与平面α内的任意一条直线都垂直,我们就说直线L与平面α互相垂直,记作L⊥α,直线L叫做平面α的垂线,平面α叫做直线L的垂面如图,直线与平面垂直时,它们唯一公共点P叫做垂足 L pα 2、判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直注意点: a)定理中的“两条相交直线”这一条件不可忽视;b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想。
2.3.2平面与平面垂直的判定1、二面角的概念:表示从空间一直线出发的两个半平面所组成的图形A 梭 l βB α2、二面角的记法:二面角α-l-β或α-AB-β3、两个平面互相垂直的判定定理:一个平面过另一个平面的垂线,则这两个平面垂直2.3.3 — 2.3.4直线与平面、平面与平面垂直的性质1、定理:垂直于同一个平面的两条直线平行2性质定理: 两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直本章知识结构框图平面(公理1、公理2、公理3、公理4)空间直线、平面的位置关系平面与平面的位置关系直线与平面的位置关系 第三章 直线与方程3.1直线的倾斜角和斜率3.1倾斜角和斜率1、直线的倾斜角的概念:当直线l与x轴相交时, 取x轴作为基准, x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角.特别地,当直线l与x轴平行或重合时, 规定α= 0°.2、 倾斜角α的取值范围: 0°≤α<180°. 当直线l与x轴垂直时, α= 90°.3、直线的斜率:一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k表示,也就是 k = tanα⑴当直线l与x轴平行或重合时, α=0°, k = tan0°=0;⑵当直线l与x轴垂直时, α= 90°, k 不存在.由此可知, 一条直线l的倾斜角α一定存在,但是斜率k不一定存在.4、 直线的斜率公式:给定两点P1(x1,y1),P2(x2,y2),x1≠x2,用两点的坐标来表示直线P1P2的斜率: 斜率公式: k=y2-y1/x2-x1 3.1.2两条直线的平行与垂直1、两条直线都有斜率而且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,那么它们平行,即注意: 上面的等价是在两条直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不成立.即如果k1=k2, 那么一定有L1∥L22、两条直线都有斜率,如果它们互相垂直,那么它们的斜率互为负倒数;反之,如果它们的斜率互为负倒数,那么它们互相垂直,即3.2.1 直线的点斜式方程1、 直线的点斜式方程:直线经过点,且斜率为 2、、直线的斜截式方程:已知直线的斜率为,且与轴的交点为 3.2.2 直线的两点式方程1、直线的两点式方程:已知两点其中 y-y1/y-y2=x-x1/x-x22、直线的截距式方程:已知直线与轴的交点为A,与轴的交点为B,其中3.2.3 直线的一般式方程1、直线的一般式方程:关于的二元一次方程(A,B不同时为0)2、各种直线方程之间的互化。
3.3直线的交点坐标与距离公式3.3.1两直线的交点坐标1、给出例题:两直线交点坐标L1 :3x+4y-2=0 L1:2x+y +2=0 解:解方程组 得 x=-2,y=2所以L1与L2的交点坐标为M(-2,2)3.3.2 两点间距离两点间的距离公式3.3.3 点到直线的距离公式1.点到直线距离公式:点到直线的距离为:2、两平行线间的距离公式:已知两条平行线直线和的一般式方程为:,:,则与的距离为第四章 圆与方程4.1.1 圆的标准方程1、圆的标准方程:圆心为A(a,b),半径为r的圆的方程2、点与圆的关系的判断方法:(1)>,点在圆外 (2)=,点在圆上(3)<,点在圆内4.1.2 圆的一般方程1、圆的一般方程: 2、圆的一般方程的特点: (1)①x2和y2的系数相同,不等于0. ②没有xy这样的二次项. (2)圆的一般方程中有三个特定的系数D、E、F,因之只要求出这三个系数,圆的方程就确定了.(3)、与圆的标准方程相比较,它是一种特殊的二元二次方程,代数特征明显,圆的标准方程则指出了圆心坐标与半径大小,几何特征较明显。
4.2.1 圆与圆的位置关系1、用点到直线的距离来判断直线与圆的位置关系.设直线:,圆:,圆的半径为,圆心到直线的距离为,则判别直线与圆的位置关系的依据有以下几点:(1)当时,直线与圆相离;(2)当时,直线与圆相切;(3)当时,直线与圆相交;4.2.2 圆与圆的位置关系两圆的位置关系.设两圆的连心线长为,则判别圆与圆的位置关系的依据有以下几点:(1)当时,圆与圆相离;(2)当时,圆与圆外切;(3)当时,圆与圆相交;(4)当时,圆与圆内切;(5)当时,圆与圆内含;4.2.3 直线与圆的方程的应用1、利用平面直角坐标系解决直线与圆的位置关系;2、过程与方法用坐标法解决几何问题的步骤:第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中的几何元素,将平面几何问题转化为代数问题;第二步:通过代数运算,解决代数问题;第三步:将代数运算结果“翻译”成几何结论.4.3.1空间直角坐标系1、点M对应着唯一确定的有序实数组,、、分别是P、Q、R在、、轴上的坐标2、有序实数组,对应着空间直角坐标系中的一点3、空间中任意点M的坐标都可以用有序实数组来表示,该数组叫做点M在此空间直角坐标系中的坐标,记M,叫做点M的横坐标,叫做点M的纵坐标,叫做点M的竖坐标。
4.3.2空间两点间的距离公式1、空间中任意一点到点之间的距离公式高中数学 必修3知识点第一章 算法初步1.1.1 算法的概念1、算法概念:在数学上,现代意义上的“算法”通常是指可以用计算机来解决的某一类问题是程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成.2. 算法的特点:(1)有限性:一个算法的步骤序列是有限的,必须在有限操作之后停止,不能是无限的.(2)确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可.(3)顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题.(4)不唯一性:求解某一个问题的解法不一定是唯一的,对于一个问题可以有不同的算法.(5)普遍性:很多具体的问题,都可以设计合理的算法去解决,如心算、计算器计算都要经过有限、事先设计好的步骤加以解决.1.1.2 程序框图1、程序框图基本概念:(一)程序构图的概念:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形。
一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明二)构成程序框的图形符号及其作用程序框名称功能起止框表示一个算法的起始和结束,是任何流程图不可少的输入、输出框表示一个算法输入和输出的信息,可用在算法中任何需要输入、输出的位置处理框赋值、计算,算法中处理数据需要的算式、公式等分别写在不同的用以处理数据的处理框内判断框判断某一条件是否成立,成立时在出口处标明“是”或“Y”;不成立时标明“否”或“N”学习这部分知识的时候,要掌握各个图形的形状、作用及使用规则,画程序框图的规则如下:1、使用标准的图形符号2、框图一般按从上到下、从左到右的方向画3、除判断框外,大多数流程图符号只有一个进入点和一个退出点判断框具有超过一个退出点的唯一符号4、判断框分两大类,一类判断框“是”与“否”两分支的判断,而且有且仅有两个结果;另一类是多分支判断,有几种不同的结果5、在图形符号内描述的语言要非常简练清楚三)、算法的三种基本逻辑结构:顺序结构、条件结构、循环结构1、顺序结构:顺序结构是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的,它是由若干个依次执行的处理步骤组成的,它是任何一个算法都离不开的一种基本算法结构。
顺序结构在程序框图中的体现就是用流程线将程序框自上而下地连接起来,按顺序执行算法步骤如在示意图中,A框和B框是依次执行的,只有在执行完A框指定的操作后,才能接着执AB行B框所指定的操作2、条件结构:条件结构是指在算法中通过对条件的判断根据条件是否成立而选择不同流向的算法结构条件P是否成立而选择执行A框或B框无论P条件是否成立,只能执行A框或B框之一,不可能同时执行A框和B框,也不可能A框、B框都不执行一个判断结构可以有多个判断框3、循环结构:在一些算法中,经常会出现从某处开始,按照一定条件,反复执行某一处理步骤的情况,这就是循环结构,反复执行的处理步骤为循环体,显然,循环结构中一定包含条件结构循环结构又称重复结构,循环结构可细分为两类:(1)、一类是当型循环结构,如下左图所示,它的功能是当给定的条件P成立时,执行A框,A框执行完毕后,再判断条件P是否成立,如果仍然成立,再执行A框,如此反复执行A框,直到某一次条件P不成立为止,此时不再执行A框,离开循环结构2)、另一类是直到型循环结构,如下右图所示,它的功能是先执行,然后判断给定的条件P是否成立,如果P仍然不成立,则继续执行A框,直到某一次给定的条件P成立为止,此时不再执行A框,离开循环结构。
A成立不成立P不成立P成立A当型循环结构 直到型循环结构注意:1循环结构要在某个条件下终止循环,这就需要条件结构来判断因此,循环结构中一定包含条件结构,但不允许“死循环”2在循环结构中都有一个计数变量和累加变量计数变量用于记录循环次数,累加变量用于输出结果计数变量和累加变量一般是同步执行的,累加一次,计数一次1.2.1 输入、输出语句和赋值语句1、输入语句图形计算器格式INPUT“提示内容”;变量INPUT “提示内容”,变量(1)输入语句的一般格式(2)输入语句的作用是实现算法的输入信息功能;(3)“提示内容”提示用户输入什么样的信息,变量是指程序在运行时其值是可以变化的量;(4)输入语句要求输入的值只能是具体的常数,不能是函数、变量或表达式;(5)提示内容与变量之间用分号“;”隔开,若输入多个变量,变量与变量之间用逗号“,”隔开2、输出语句PRINT“提示内容”;表达式图形计算器格式Disp “提示内容”,变量(1)输出语句的一般格式(2)输出语句的作用是实现算法的输出结果功能;(3)“提示内容”提示用户输入什么样的信息,表达式是指程序要输出的数据;(4)输出语句可以输出常量、变量或表达式的值以及字符。
3、赋值语句变量=表达式图形计算器格式表达式变量(1)赋值语句的一般格式(2)赋值语句的作用是将表达式所代表的值赋给变量;(3)赋值语句中的“=”称作赋值号,与数学中的等号的意义是不同的赋值号的左右两边不能对换,它将赋值号右边的表达式的值赋给赋值号左边的变量;(4)赋值语句左边只能是变量名字,而不是表达式,右边表达式可以是一个数据、常量或算式;(5)对于一个变量可以多次赋值注意:①赋值号左边只能是变量名字,而不能是表达式如:2=X是错误的②赋值号左右不能对换如“A=B”“B=A”的含义运行结果是不同的③不能利用赋值语句进行代数式的演算如化简、因式分解、解方程等)④赋值号“=”与数学中的等号意义不同1.2.2条件语句1、条件语句的一般格式有两种:(1)IF—THEN—ELSE语句;(2)IF—THEN语句2、IF—THEN—ELSE语句IF—THEN—ELSE语句的一般格式为图1,对应的程序框图为图2否是满足条件?语句1语句2IF 条件 THEN语句1ELSE语句2END IF 图1 图2分析:在IF—THEN—ELSE语句中,“条件”表示判断的条件,“语句1”表示满足条件时执行的操作内容;“语句2”表示不满足条件时执行的操作内容;END IF表示条件语句的结束。
计算机在执行时,首先对IF后的条件进行判断,如果条件符合,则执行THEN后面的语句1;若条件不符合,则执行ELSE后面的语句23、IF—THEN语句满足条件?语句是否(图4)IF—THEN语句的一般格式为图3,对应的程序框图为图4IF 条件 THEN语句END IF(图3) 注意:“条件”表示判断的条件;“语句”表示满足条件时执行的操作内容,条件不满足时,结束程序;END IF表示条件语句的结束计算机在执行时首先对IF后的条件进行判断,如果条件符合就执行THEN后边的语句,若条件不符合则直接结束该条件语句,转而执行其它语句1.2.3循环语句循环结构是由循环语句来实现的对应于程序框图中的两种循环结构,一般程序设计语言中也有当型(WHILE型)和直到型(UNTIL型)两种语句结构即WHILE语句和UNTIL语句1、WHILE语句满足条件?循环体否是(1)WHILE语句的一般格式是 对应的程序框图是WHILE 条件循环体WEND(2)当计算机遇到WHILE语句时,先判断条件的真假,如果条件符合,就执行WHILE与WEND之间的循环体;然后再检查上述条件,如果条件仍符合,再次执行循环体,这个过程反复进行,直到某一次条件不符合为止。
这时,计算机将不执行循环体,直接跳到WEND语句后,接着执行WEND之后的语句因此,当型循环有时也称为“前测试型”循环2、UNTIL语句(1)UNTIL语句的一般格式是 对应的程序框图是满足条件?循环体是否DO循环体LOOP UNTIL 条件(2)直到型循环又称为“后测试型”循环,从UNTIL型循环结构分析,计算机执行该语句时,先执行一次循环体,然后进行条件的判断,如果条件不满足,继续返回执行循环体,然后再进行条件的判断,这个过程反复进行,直到某一次条件满足时,不再执行循环体,跳到LOOP UNTIL语句后执行其他语句,是先执行循环体后进行条件判断的循环语句分析:当型循环与直到型循环的区别:(先由学生讨论再归纳)(1) 当型循环先判断后执行,直到型循环先执行后判断;在WHILE语句中,是当条件满足时执行循环体,在UNTIL语句中,是当条件不满足时执行循环1.3.1辗转相除法与更相减损术1、辗转相除法也叫欧几里德算法,用辗转相除法求最大公约数的步骤如下:(1):用较大的数m除以较小的数n得到一个商和一个余数;(2):若=0,则n为m,n的最大公约数;若≠0,则用除数n除以余数得到一个商和一个余数;(3):若=0,则为m,n的最大公约数;若≠0,则用除数除以余数得到一个商和一个余数;…… 依次计算直至=0,此时所得到的即为所求的最大公约数。
2、更相减损术我国早期也有求最大公约数问题的算法,就是更相减损术在《九章算术》中有更相减损术求最大公约数的步骤:可半者半之,不可半者,副置分母•子之数,以少减多,更相减损,求其等也,以等数约之翻译为:(1):任意给出两个正数;判断它们是否都是偶数若是,用2约简;若不是,执行第二步2):以较大的数减去较小的数,接着把较小的数与所得的差比较,并以大数减小数继续这个操作,直到所得的数相等为止,则这个数(等数)就是所求的最大公约数例2 用更相减损术求98与63的最大公约数.分析:(略) 3、辗转相除法与更相减损术的区别:(1)都是求最大公约数的方法,计算上辗转相除法以除法为主,更相减损术以减法为主,计算次数上辗转相除法计算次数相对较少,特别当两个数字大小区别较大时计算次数的区别较明显2)从结果体现形式来看,辗转相除法体现结果是以相除余数为0则得到,而更相减损术则以减数与差相等而得到1.3.2秦九韶算法与排序1、秦九韶算法概念:f(x)=anxn+an-1xn-1+….+a1x+a0求值问题f(x)=anxn+an-1xn-1+….+a1x+a0=( anxn-1+an-1xn-2+….+a1)x+a0 =(( anxn-2+an-1xn-3+….+a2)x+a1)x+a0 =......=(...( anx+an-1)x+an-2)x+...+a1)x+a0求多项式的值时,首先计算最内层括号内依次多项式的值,即v1=anx+an-1然后由内向外逐层计算一次多项式的值,即v2=v1x+an-2 v3=v2x+an-3 ...... vn=vn-1x+a0这样,把n次多项式的求值问题转化成求n个一次多项式的值的问题。
2、两种排序方法:直接插入排序和冒泡排序1、直接插入排序基本思想:插入排序的思想就是读一个,排一个将第1个数放入数组的第1个元素中,以后读入的数与已存入数组的数进行比较,确定它在从大到小的排列中应处的位置.将该位置以及以后的元素向后推移一个位置,将读入的新数填入空出的位置中.(由于算法简单,可以举例说明)2、冒泡排序基本思想:依次比较相邻的两个数,把大的放前面,小的放后面.即首先比较第1个数和第2个数,大数放前,小数放后.然后比较第2个数和第3个数......直到比较最后两个数.第一趟结束,最小的一定沉到最后.重复上过程,仍从第1个数开始,到最后第2个数...... 由于在排序过程中总是大数往前,小数往后,相当气泡上升,所以叫冒泡排序. 1.3.3进位制1、概念:进位制是一种记数方式,用有限的数字在不同的位置表示不同的数值可使用数字符号的个数称为基数,基数为n,即可称n进位制,简称n进制现在最常用的是十进制,通常使用10个阿拉伯数字0-9进行记数对于任何一个数,我们可以用不同的进位制来表示比如:十进数57,可以用二进制表示为111001,也可以用八进制表示为71、用十六进制表示为39,它们所代表的数值都是一样的。
一般地,若k是一个大于一的整数,那么以k为基数的k进制可以表示为:,而表示各种进位制数一般在数字右下脚加注来表示,如111001(2)表示二进制数,34(5)表示5进制数第二章 统计2.1.1简单随机抽样1.总体和样本 在统计学中 , 把研究对象的全体叫做总体.把每个研究对象叫做个体.把总体中个体的总数叫做总体容量.为了研究总体的有关性质,一般从总体中随机抽取一部分:, , , 研究,我们称它为样本.其中个体的个数称为样本容量.2.简单随机抽样,也叫纯随机抽样就是从总体中不加任何分组、划类、排队等,完全随 机地抽取调查单位特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性简单随机抽样是其它各种抽样形式的基础通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法3.简单随机抽样常用的方法: (1)抽签法;⑵随机数表法;⑶计算机模拟法;⑷使用统计软件直接抽取在简单随机抽样的样本容量设计中,主要考虑:①总体变异情况;②允许误差范围;③概率保证程度4.抽签法: (1)给调查对象群体中的每一个对象编号; (2)准备抽签的工具,实施抽签 (3)对样本中的每一个个体进行测量或调查 例:请调查你所在的学校的学生做喜欢的体育活动情况。
5.随机数表法: 例:利用随机数表在所在的班级中抽取10位同学参加某项活动2.1.2系统抽样1.系统抽样(等距抽样或机械抽样):把总体的单位进行排序,再计算出抽样距离,然后按照这一固定的抽样距离抽取样本第一个样本采用简单随机抽样的办法抽取K(抽样距离)=N(总体规模)/n(样本规模)前提条件:总体中个体的排列对于研究的变量来说,应是随机的,即不存在某种与研究变量相关的规则分布可以在调查允许的条件下,从不同的样本开始抽样,对比几次样本的特点如果有明显差别,说明样本在总体中的分布承某种循环性规律,且这种循环和抽样距离重合2.系统抽样,即等距抽样是实际中最为常用的抽样方法之一因为它对抽样框的要求较低,实施也比较简单更为重要的是,如果有某种与调查指标相关的辅助变量可供使用,总体单元按辅助变量的大小顺序排队的话,使用系统抽样可以大大提高估计精度2.1.3分层抽样1.分层抽样(类型抽样):先将总体中的所有单位按照某种特征或标志(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采用简单随机抽样或系用抽样的办法抽取一个子样本,最后,将这些子样本合起来构成总体的样本两种方法:1.先以分层变量将总体划分为若干层,再按照各层在总体中的比例从各层中抽取。
2.先以分层变量将总体划分为若干层,再将各层中的元素按分层的顺序整齐排列,最后用系统抽样的方法抽取样本2.分层抽样是把异质性较强的总体分成一个个同质性较强的子总体,再抽取不同的子总体中的样本分别代表该子总体,所有的样本进而代表总体分层标准:(1)以调查所要分析和研究的主要变量或相关的变量作为分层的标准2)以保证各层内部同质性强、各层之间异质性强、突出总体内在结构的变量作为分层变量3)以那些有明显分层区分的变量作为分层变量3.分层的比例问题: (1)按比例分层抽样:根据各种类型或层次中的单位数目占总体单位数目的比重来抽取子样本的方法 (2)不按比例分层抽样:有的层次在总体中的比重太小,其样本量就会非常少,此时采用该方法,主要是便于对不同层次的子总体进行专门研究或进行相互比较如果要用样本资料推断总体时,则需要先对各层的数据资料进行加权处理,调整样本中各层的比例,使数据恢复到总体中各层实际的比例结构2.2.2用样本的数字特征估计总体的数字特征1、本均值:2、.样本标准差:3.用样本估计总体时,如果抽样的方法比较合理,那么样本可以反映总体的信息,但从样本得到的信息会有偏差在随机抽样中,这种偏差是不可避免的。
虽然我们用样本数据得到的分布、均值和标准差并不是总体的真正的分布、均值和标准差,而只是一个估计,但这种估计是合理的,特别是当样本量很大时,它们确实反映了总体的信息4.(1)如果把一组数据中的每一个数据都加上或减去同一个共同的常数,标准差不变(2)如果把一组数据中的每一个数据乘以一个共同的常数k,标准差变为原来的k倍(3)一组数据中的最大值和最小值对标准差的影响,区间的应用;“去掉一个最高分,去掉一个最低分”中的科学道理2.3.2两个变量的线性相关1、概念: (1)回归直线方程 (2)回归系数2.最小二乘法3.直线回归方程的应用 (1)描述两变量之间的依存关系;。