专题训练:动态问题(二)1.如图,在锐角三角形ABC中,BC=12,△ABC的面积为48,D,E分别是边AB,AC上的两个动点(D不与A,B重合),且保持DE∥BC,以DE为边,在点的异侧作正方形DEFG.(1)当正方形DEFG的边GF在BC上时,求正方形DEFG的边长;B(第1题图)ADEFGCB(备用图(1))ACB(备用图(2))AC(2)设DE = x,△ABC与正方形DEFG重叠部分的面积为,试求关于的函数关系式,写出x的取值范围,并求出y的最大值.2.如图所示,菱形ABCD的顶点A、B在x轴上,点A在点B的左侧,点D在y轴的正半轴上,∠BAD=60°,点A的坐标为(-2,0). ⑴求线段AD所在直线的函数表达式.⑵动点P从点A出发,以每秒1个单位长度的速度,按照A→D→C→B→A的顺序在菱形的边上匀速运动一周,设运动时间为t秒.求t为何值时,以点P为圆心、以1为半径的圆与对角线AC相切?O第22题图xyABPCD3.已知:把Rt△ABC和Rt△DEF按如图(1)摆放(点C与点E重合),点B、C(E)、F在同一条直线上.∠ACB =∠EDF = 90°,∠DEF = 45°,AC = 8 cm,BC = 6 cm,EF = 9 cm.如图(2),△DEF从图(1)的位置出发,以1 cm/s的速度沿CB向△ABC匀速移动,在△DEF移动的同时,点P从△ABC的顶点B出发,以2 cm/s的速度沿BA向点A匀速移动.当△DEF的顶点D移动到AC边上时,△DEF停止移动,点P也随之停止移动.DE与AC相交于点Q,连接PQ,设移动时间为t(s)(0<t<4.5).解答下列问题:(1)当t为何值时,点A段PQ的垂直平分线上?(2)连接PE,设四边形APEC的面积为y(cm2),求y与t之间的函数关系式;是否存在某一时刻t,使面积y最小?若存在,求出y的最小值;若不存在,说明理由.(3)是否存在某一时刻t,使P、Q、F三点在同一条直线上?若存在,求出此时t的值;若不存在,说明理由.(图(3)供同学们做题使用)ABC图(3)ADBCF(E)图(1)ADBCFE图(2)PQ4.如图,在直角坐标系中,矩形ABCD的边AD在y轴正半轴上,点A、C的坐标分别为(0,1)、(2,4).点P从点A出发,沿A→B→C以每秒1个单位的速度运动,到点C停止;点Q在x轴上,横坐标为点P的横、纵坐标之和.抛物线经过A、C两点.过点P作x轴的垂线,垂足为M,交抛物线于点R.设点P的运动时间为t(秒),△PQR的面积为S(平方单位). (1)求抛物线对应的函数关系式. (2)分别求t=1和t=4时,点Q的坐标. (3)当0<≤5时,求S与t之间的函数关系式,并直接写出S的最大值.。