文档详情

2024-2025学年广东省汕头市七年级下学期4月期中考试数学试题

精***
实名认证
店铺
DOCX
346.36KB
约19页
文档ID:253612564
2024-2025学年广东省汕头市七年级下学期4月期中考试数学试题_第1页
1/19

2024-2025学年广东省汕头市七年级下学期4月期中考试数学试题一、选择题 1.以下能够准确表示我们学校地理位置的是(  )A.兰州新区500米 B.东经109.01∘,北纬34.19∘C.在黄河以南 D.在兰州市 2.数5的平方根为(   )A.5 B.25 C.±25 D.±5 3.点P−5,2到y轴的距离为(   )A.−5 B.2 C.−2 D.5 4.如图,在△ABC中,∠C=90∘,AC=3,AB=5,点M在BC边上(不与B,C两点重合),连接AM,则AM的长可能是(   )A.6 B.5.5 C.4.5 D.3 5.实数423,−39,0,4,π3,0.0121121112⋯(相邻每个2之间依次多一个1),0.6,其中无理数的个数为(   )A.3 B.4 C.5 D.6 6.如图,点E在BC的延长线上,对于给出的四个条件:①∠1=∠3;②∠2+∠5=180∘;③∠4=∠B;④∠D+∠BCD=180∘.其中能判断AD∥BC的是(    )A.①② B.①④ C.①③ D.②④ 7.如图,在围棋盘上有三枚棋子,如果黑棋①的位置用坐标表示为1,−1,黑棋②的位置用坐标表示为−2,0,则白棋③的位置坐标表示为(   )A.−4,3 B.3,−2 C.−3,2 D.−4,−2 8.近几年中学生近视的现象越来越严重,为保护视力,某公司推出了护眼灯,其侧面示意图(台灯底座高度忽略不计)如图所示,其中BC⊥AB,ED // AB,经使用发现,当∠EDC=114∘时,台灯光线最佳.则此时∠DCB的度数为(   )A.114∘ B.144∘ C.146∘ D.156∘ 9.下列结论正确的是(   )A.点P−2024,2025在第四象限B.点M在第二象限,它到x轴,y轴的距离分别为4,3,则点M的坐标为−4,3C.平面直角坐标系中,点Px,y位于坐标轴上,那么xy=0D.已知点P−4,6,Q−3,6,则直线PQ∥y轴 10.如图,面积为6的正方形ABCD的顶点A在数轴上,且表示的数为1,若AD=AE,则数轴上点E所表示的数为(    )A.6 B.−6 C.6−1 D.1−6 11.如果点Am−2,2m在第一、三象限的角平分线上,那么点N−m+2,m−1在(    )A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空题 12.把命题“互为相反数的两个数的和为零”写成“如果…那么…”的形式:______________ 13. 如图,在长方形长30m,宽20m地块内修筑同样宽的两条“之”字路,余下部分作为耕地,道路宽为2米时耕地面积为______________平方米. 14.若a+2和2a−11都是同一个正数的平方根,则这个正数是___________. 15.小明将一副常规直角三角板在桌面上摆出了如图所示的图案,点C在DF上,且AC // EF,则∠BCF=___________度.三、解答题 16.计算:3−127+−12023−259+38. 17.如图,已知OB⊥AO,∠AOC=120∘,OE平分∠AOB,OF平分∠BOC,求∠BOC和∠EOF的度数. 18.如图,在平面直角坐标系中,每个小正方形网格的边长均为1.(1)点A,B的坐标分别为_______,_______.(2)标出点C−3,−2.(3)在2的条件下,D为网格中的一点,且BD // AC,BD=AC,则点D的坐标为_______. 19.小明作为蓝信封行动的通信志愿者,有一次制作了一张面积为81cm2的正方形明信片想寄给对接的乡村小朋友.已知信封的长、宽之比为5:3,面积为150cm2.(1)求长方形信封的长和宽;(2)判断小明能否将这张明信片不折叠就放入此信封,并说明理由. 20.如图是一种躺椅及其侧面简化结构示意图,扶手AB与底座CD都平行于地面(即AB∥CD,靠背DM与支架OE平行(即DM∥OE),前支架OE与后支架OF分别与CD交于点G和点D,AB与DM交于点N,当∠EOF=90∘,∠ODC=30∘时,人躺着最舒服,求此时∠AOE和∠ANM的度数. 21.已知点P2a−2,a+5,解答下列各题:(1)若点P在x轴上.求出点P的坐标;(2)若点Q的坐标为4,5,直线PQ∥x轴,求出点P的坐标;(3)若点P在第二象限,且它到x轴、y轴的距离相等,求出点P的坐标. 22.(1)填表:a0.0000080.008880003a22.(2)观察上表,表中数a的小数点的移动与它的立方根3a的小数点的移动之间有何规律?请用语言叙述这个规律:______;22.(3)根据你发现的规律解答:①已知30.214≈0.5981,32.14≈1.289,321.4≈2.776,则32140介于哪两个整数之间?②已知30.001843≈0.1226,则31843≈______;③用铁皮制作一个封闭的正方体,它的体积是1.843立方米,问需要多大面积的铁皮?(结果精确到0.01平方米) 23.如图1,在平面直角坐标系中,Aa,0是x轴正半轴上一点,C是第四象限内一点,CB⊥y轴交y轴负半轴于B0,b,且a−3+b+42=0,S四边形AOBC=16.(1)求点C的坐标;(2)如图2,设D为线段OB上一动点,连接AD,CD,若S△ACD=7,求此时点D的坐标;(3)如图3,当点D段OB上运动时,作DM⊥AD交BC于M点,∠BMD,∠DAO的平分线交于N点,则点D在运动过程中,∠N的大小是否会发生变化?若不变化,求出其值;若变化,请说明理由.参考答案与试题解析2024-2025学年广东省汕头市七年级下学期4月期中考试数学试题一、选择题1.【答案】B【考点】用有序数对表示位置【解析】本题主要考查了有序数对确定位置,理解有序数对的定义是解题的关键.根据有序数对的定义,确定一个位置需要两个数据,即可获得答案.【解答】解:A.不能准确表示我们学校地理位置,故不符合题意;B.能准确表示我们学校地理位置,故符合题意;C.不能准确表示我们学校地理位置,故不符合题意;D.不能准确表示我们学校地理位置,故不符合题意.故选:B.2.【答案】D【考点】求一个数的平方根【解析】本题考查了平方根的定义,根据平方根的定义即可求解,掌握平方根的定义是解题的关键.【解答】解:数5的平方根为±5,故选:D.3.【答案】D【考点】求点到坐标轴的距离【解析】本题考查了点的坐标,根据点到y轴的距离等于横坐标的绝对值求解即可,熟练掌握平面内点的坐标特点是解题的关键.【解答】解:∵点P−5,2,∴点P到y轴的距离为−5=5,故选:D.4.【答案】C【考点】垂线段最短【解析】本题考查垂线段最短,根据垂线段最短,得到AM的取值范围,进行判断即可.【解答】∵∠C=90∘,AC=3,AB=5,∴AC

下载提示
相关文档
正为您匹配相似的精品文档