文档详情

2014届数学10.1分类加法计数原理与分步乘法计数原理

无***
实名认证
店铺
DOC
197.71KB
约5页
文档ID:135701237
2014届数学10.1分类加法计数原理与分步乘法计数原理_第1页
1/5

河北饶阳中学2014届数学一轮复习试题[来源:z,zs,]A组 专项基础训练(时间:35分钟,满分:57分)一、选择题(每小题5分,共20分)1. 从集合{1,2,3,…,10}中任意选出三个不同的数,使这三个数成等比数列,这样的等比数列的个数为 (  )A.3 B.4 C.6 D.8答案 D解析 以1为首项的等比数列为1,2,4;1,3,9;以2为首项的等比数列为2,4,8;以4为首项的等比数列为4,6,9,共4个.把这四个数列顺序颠倒,又得到4个数列,故所求数列有8个.2. 集合P={x,1},Q={y,1,2},其中x,y∈{1,2,3,…,9},且P⊆Q.把满足上述条件的一对有序整数对(x,y)作为一个点的坐标,则这样的点的个数是 (  )A.9 B.14 C.15 D.21答案 B解析 当x=2时,x≠y,点的个数为1×7=7(个);当x≠2时,x=y,点的个数为7×1=7(个),则共有14个点,故选B.3. 在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息.若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为 (  )A.10 B.11 C.12 D.15答案 B解析 方法一 分0个相同、1个相同、2个相同讨论.(1)若0个相同,则信息为:1001.共1个.(2)若1个相同,则信息为:0001,1101,1011,1000.共4个.[来源:中国教育出版网](3)若2个相同,又分为以下情况:①若位置一与二相同,则信息为:0101;②若位置一与三相同,则信息为:0011;③若位置一与四相同,则信息为:0000;④若位置二与三相同,则信息为:1111;⑤若位置二与四相同,则信息为:1100;⑥若位置三与四相同,则信息为:1010.共有6个.故与信息0110至多有两个对应位置上的数字相同的信息个数为1+4+6=11.方法二 若0个相同,共有1个;若1个相同,共有C=4(个);若2个相同,共有C=6(个).故共有1+4+6=11(个).4. 如图所示,用4种不同的颜色涂入图中的矩形A,B,C,D中,要求相邻的矩形涂色不同,则不同的涂法有 (  )A.72种 B.48种C.24种 D.12种答案 A解析 按要求涂色至少需要3种颜色,故分两类.一是4种颜色都用,这时A有4种涂法,B有3种涂法,C有2种涂法,D有1种涂法,共有4×3×2×1=24(种)涂法;二是用3种颜色,这时A,B,C的涂法有4×3×2=24(种),D只要不与C同色即可,故D有2种涂法.故不同的涂法共有24+24×2=72(种).二、填空题(每小题5分,共15分)[来源:中教网]5. (2011·北京)用数字2,3组成四位数,且数字2,3至少都出现一次,这样的四位数共有________个.(用数字作答)答案 14解析 数字2,3至少都出现一次,包括以下情况:“2”出现1次,“3”出现3次,共可组成C=4(个)四位数.“2”出现2次,“3”出现2次,共可组成C=6(个)四位数.“2”出现3次,“3”出现1次,共可组成C=4(个)四位数.综上所述,共可组成14个这样的四位数.6. 某次活动中,有30人排成6行5列,现要从中选出3人进行礼仪表演,要求这3人中的任意2人不同行也不同列,则不同的选法种数为________(用数字作答).答案 7 200解析 其中最先选出的一个人有30种方法,此时不能再从这个人所在的行和列上选人,还剩一个5行4列的队形,故选第二个人有20种方法,此时不能再从该人所在的行和列上选人,还剩一个4行3列的队形,此时第三个人的选法有12种,根据分步乘法计数原理,总的选法种数是30×20×12=7 200.7. 已知集合M={1,-2,3},N={-4,5,6,-7},从M,N这两个集合中各选一个元素分别作为点的横坐标、纵坐标,则这样的坐标在直角坐标系中可表示第一、第二象限内不同的点的个数是________.答案 6解析 分两类:第一类,第一象限内的点,有2×2=4(个);第二类,第二象限内的点,有1×2=2(个).三、解答题(共22分)8. (10分)某外语组有9人,每人至少会英语和日语中的一门,其中7人会英语,3人会日语,从中选出会英语和日语的各一人,有多少种不同的选法?解 由题意得有1人既会英语又会日语,6人只会英语,2人只会日语.第一类:从只会英语的6人中选1人说英语,共有6种方法,则说日语的有2+1=3(种),此时共有6×3=18(种);第二类:不从只会英语的6人中选1人说英语,则只有1种方法,则选会日语的有2种,此时共有1×2=2(种);所以根据分类加法计数原理知共有18+2=20(种)选法.[来源:中_国教_育出_版网]9. (12分)直角坐标系xOy平面上,平行直线x=n(n=0,1,2,…,5)与平行直线y=n(n=0,1,2,…,5)组成的图形中,矩形共有多少个?解 方法一 对所构成的矩形中所含“小正方形”的个数进行分类:①含1块:25个②含2块:20+20=40个③含3块:15+15=30个④含4块:20+16=36个⑤含5块:10个⑥含6块:12+12=24个⑦含8块:8+8=16个⑧含9块:9个⑨含10块:8个⑩含12块:12个⑪含15块:6个⑫含16块:4个⑬含20块:4个⑭含25块:1个总计:225个方法二 在垂直于x轴的6条直线中任取2条,在垂直于y轴的6条直线中任取2条,4条直线相交得出一个矩形,所以矩形总数为C×C=15×15=225个.B组 专项能力提升(时间:25分钟,满分:43分)[来源:z,zs,]一、选择题(每小题5分,共15分)1. 只用1,2,3三个数字组成一个四位数,规定这三个数必须同时使用,且同一数字不能相邻出现,则这样的四位数有 (  )A.6个 B.9个 C.18个 D.36个答案 C解析 由题意知,1,2,3中必有某一个数字重复使用2次,第一步确定谁被使用2次,有3种方法;第二步把这2个相等的数放在四位数不相邻的两个位置上,也有3种方法;第三步将余下的2个数放在四位数余下的2个位置上,有2种方法.故共可组成3×3×2=18个不同的四位数.2. 由0,1,2,3这四个数字组成的四位数中,有重复数字的四位数共有 (  )A.238个 B.232个 C.174个 D.168个答案 C解析 由0,1,2,3可组成的四位数共有3×43=192(个),其中无重复数字的四位数共有3A=18(个),故共有192-18=174(个).3. 如图,一环形花坛分成A,B,C,D四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为(  )A.96 B.84 C.60 D.48答案 B解析 可依次种A、B、C、D四块,当C与A种同一种花时,有4×3×1×3=36(种)种法;当C与A所种花不同时,有4×3×2×2=48(种)种法,由分类加法计数原理,不同的种法种数为36+48=84.二、填空题(每小题5分,共15分)4. 某电子元件,是由3个电阻组成的回路,其中有4个焊点A、B、C、D,若某个焊点脱落,整个电路就不通,现在发现电路不通了,那么焊点脱落的可能情况共有________种.答案 15[来源:z#zs#]解析 方法一 当线路不通时焊点脱落的可能情况共有2×2×2×2-1=15(种).方法二 恰有i个焊点脱落的可能情况为C(i=1,2,3,4)种,由分类加法计数原理,当电路不通时焊点脱落的可能情况共C+C+C+C=15(种).5. 一个乒乓球队里有男队员5名,女队员4名,从中选出男、女队员各一名组成混合双打,共有________种不同的选法.答案 20解析 “完成这件事”需选出男、女队员各一名,可分两步进行:第一步选一名男队员,有5种选法;第二步选一名女队员,有4种选法,共有5×4=20种选法.6. 形如45132的数称为“波浪数”,即十位数字,千位数字均比与它们各自相邻的数字大,则由1,2,3,4,5可构成不重复的五位“波浪数”的个数为________.答案 16解析 由题意可得,十位和千位只能是4、5或者3、5.若十位和千位排4、5,则其他位置任意排1、2、3,则这样的数有AA=12(个);若十位和千位排5、3,这时4只能排在5的一边且不能和其他数字相邻,1、2在其余位置上任意排列,则这样的数有AA=4(个),综上,共有16个.三、解答题7. (13分)某电视台连续播放6个广告,其中有3个不同的商业广告、两个不同的宣传广告、一个公益广告,要求最后播放的不能是商业广告,且宣传广告与公益广告不能连续播放,两个宣传广告也不能连续播放,则有多少种不同的播放方式?解 用1、2、3、4、5、6表示广告的播放顺序,则完成这件事有三类方法.第一类:宣传广告与公益广告的播放顺序是2、4、6.分6步完成这件事,共有3×3×2×2×1×1=36种不同的播放方式.第二类:宣传广告与公益广告的播放顺序是1、4、6,分6步完成这件事,共有3×3×2×2×1×1=36种不同的播放方式.第三类:宣传广告与公益广告的播放顺序是1、3、6,同样分6步完成这件事,共有3×3×2×2×1×1=36种不同的播放方式.由分类加法计数原理得:6个广告不同的播放方式有36+36+36=108种.第 5 页 共 5 页。

下载提示
相关文档
正为您匹配相似的精品文档