6、设函数1f ( x) =- x3 +2ax 2 -3a2 x +b3f (x)(0 ()(III)设x1 , e x f xg x0成立, 求实数 p 的取 值范围.10, 问题转化为 时 恒成立,故, h (x) [-3,-1] [-1,2][ 2,3], 在 有解,故 ,maxx x2 , ∴ 在区间 上只有一个解x , x Îf (xmin 1max 2a £a a ï 132 课后作业答案:1、解析:(1)设h (x)=g(x)-f(x)=2x3-3x2-12x+c x Î[-3,3] h (x)³0 hmin(x)³0。
令h¢(x)=6x2-6x-12=6 (x+1)(x-2)=0,得x =-1或2由导数知识,可知 在 单调递 增,在 单调递减,在 单调递增,且h(-3)=c-45,h (x) =h (-1)=c+7 h (x) =h (2)=c-20 极大值 极小值,h(3)=c -9,∴hmin (x)=h(-3)=c-45,由c -45 ³0 ,得 c ³45 2)据题意:存在x Î[-3,3],使f (x)£g(x)成立,即为:h (x)=g(x)-f(x)³0xÎ[-3,3] h max (x)³0由(1)知h (x)=c+7³0c ³-7,于是得3)它与(1)问虽然都是不等式恒成立 问题,但却有很大的区 别,对任意x , x Î[-3,3] 1 2,都有f (x)£g(x1 2)成立,不等式的左右两端函数的自 变量不同, , 的取值在1[-3,32]上具有任意性,∴要使不等式恒成立的充要条件是:fmax(x) £gmin( x ) • , • x Î[-3•,3]f (x)=7(x-2)-c-28,xÎ[-3,3] 。
∵ ∴f(x)max=f(-3)=147 -c,∵g¢(x)=6x2+8x-40 =2(3x+10)(x-2)g¢(x)=0 [-3,3]x =2∴g (x)=g (2)=-48 min, ∴147 -c £-48,即 c ³195 .(4)存在 1 2[-3,3],都有 1)£g(x2)f (x)£g ,等价于 min 1max(x2),由(3)得f(x)=f(2)=-c-28,g(x )=g(-3)=102,-c -28 £102 Þ c ³-130点评:本题的三个小题,表面形式非常相似,究其本 质却大相径庭, 应认真审题,深入思考,多加训练,准确使用 其成立的充要条件2、B 解析:由方程 ì a2logax +log y =3可得y =a3x,对于任意的x Î[a, 2a],可得2a2a3££2x,依题意得í 2 îa2 ³a 2Þ a ³225a £1+2y 33、答案: 解析:由不等式a(x2+y2) £(x +y)2可得x y+y x,由 线性规划可得1 ££x 2。
Þ a >sin2x -4sin x +1 =(sinx -2)-3(-1£sin x £1)é(sinx -2)2-3ù=-24、解:原不等式有解有解,而ë ûmin,所以a >-211x =3¥ maxminí 5 î x +1 2x +2 x+1y =ax和5、解:画出两个凼数y =上的图象如图知当 时y =3,x (4-x)3a =3在x Î[0,3]yy =ax当a £33,x Î[0,3]时总有ax £x (4-x)所以a £330 3 x6、解:(Ⅰ)f¢(x) =-x2 +4ax -3a 2(1 分)令f¢(x) >0,得f (x)的单调递增区间为(a,3a)令f¢(x) <0,得f (x)的单调递减区间为(-¥,a)和( 3a ,+ ) (4 分)-3a3 +b;∴当 x=a 时,f ( x)极小值=4当 x=3a 时,f ( x)极小值=b.(6 分)(Ⅱ)由 |f¢(x)|≤a,得-a≤ -x2+4ax-3a2≤a. ①(7 分)∵02a. ∴f¢(x) =-x2 +4ax -3a 2在[a +1, a +2]上是减函数. (9 分)∴f¢( x) =f¢(a +1) =2a -1. f¢( x) = f (a +2) =4a -4.于是,对任意x Î[a +1, a +2],不等式①恒成立,等价于ì-a£4a -4, 4解 得 £a £1. a ³2a -1.4£a <1.又0 0时,px2 £0 , -2 x <0 Þ h(x)<0 h (x)=px2-2x +p,所以f (x0在 (0,+ ¥) 内为单调递减,故1x = Î 0 ,+¥ p;)② 当hmin∴时,æ1 öx =hç ÷è ø=p -1p,只需,其图象为开口向上的抛物 线,对称轴为 1p - ³0f ¢(x)³0p,即 p≥1 时, h(x)≥0 ,,,∴f (x) 在 (0,+ ¥) 内为单调递增,故 p≥1 适合题意. 综上可得,p≥1 或 p≤0 ................................. 9 分2e(III)∵g(x) =x在 [1,e] 上是减函数∴x = e 时 ,g(x)min = 2 ,x = 1 时 ,g(x)max = 2e 即 g(x) Î [2,2e] ................................... 10 分① p≤0 时,由 (II) 知 f (x) 在 [1,e] 递减 Þ f (x)max = f (1) = 0 < 2 ,不合题意。
1② 0 < p < 1 时,由 x Î [1,e] Þ x- ≥013x xx e ee11∴f(x)=p (x - )-2lnx≤x - -2lnx右 边为 f (x) 当 p = 1 时的表达式,故在 [1,e] 递 增111∴f (x)≤x- -2ln x≤e- -2ln e = e - -2 < 2 ,不合题意 ................................... 12 分③ p≥1 时,由 (II) 知 f (x) 在 [1,e] 连续递增,f (1) = 0 < 2,又 g(x) 在 [1,e] 上是减函数∴本命 题 Û f (x)max > g(x)min = 2 ,x Î [1,e]1 4eÞ f (x)max = f (e) = p (e - )-2ln e > 2Þ p >e 2-1………… 13 分综上,p 的取 值范围是 (4ee 2-1,+¥) ........................ 14 分14“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。