文档详情

新人教七年级数学上册整式的加减复习

沈***
实名认证
店铺
PPTX
361.95KB
约26页
文档ID:158513867
新人教七年级数学上册整式的加减复习_第1页
1/26

本章知识点回顾用字母表示数用字母表示数用列式表示数量关系用列式表示数量关系单项式定义、系单项式定义、系数、次数数、次数多项式定义、系多项式定义、系数、次数数、次数整整式式同类项定义同类项定义合并同类项的法则合并同类项的法则去括号的法则去括号的法则整式的加减整式的加减整式的加减整式的加减第1页/共26页应该注意四点:(1)代数式中出现乘号,通常写作“或者省略不写(2)数字与字母相乘时,数字写在字母前面(3)除法运算写成分数形式(4)当表示和或差而后面有单位时,代数式应加括号用代数式表示乙数:(1)乙数比x大5;(2)乙数比x的2倍小3;(3)乙数比x的倒数小7;(4)乙数比x大16%第2页/共26页先填空先填空,再请说出你所列式子的运算含义再请说出你所列式子的运算含义.1.边长为x x的正方形的周长是 .2.一辆汽车的速度是v千米/小时,行驶t小时所走过的路程为 千米3.如图正方体的表面积为 ,体积为 .4.设n表示一个数,则它的相反数是 .5.半径为r的圆面积是 .4x xvta36a2-nrr2a相信自己你是最棒的相信自己你是最棒的 回顾 思考第3页/共26页1.当单项式的系数是1或-1时,“1”通常省略不写。

注意的问题:2.当式子分母中出现字母时不是单项式3.圆周率是常数,不要看成字母4.当单项式的系数是带分数时,通常写成假分数5.单项式的系数应包括它前面的性质符号6.单项式次数是指所有字母的次数的和,与数字的次数没有关系7.单独的数字不含字母,规定它的次数是零次.第4页/共26页(1)(1)单项式单项式是由数或字母的乘积组成的代数式;是由数或字母的乘积组成的代数式;单独的一个数或字母也是单项式;单独的一个数或字母也是单项式;单项式的数字因数叫做单项式的单项式的数字因数叫做单项式的系数系数;单项式中所有字母的单项式中所有字母的指数的和指数的和叫做单项式的叫做单项式的次次数数,而且,而且次数只与字母有关次数只与字母有关第5页/共26页1、温度由toc下降5oc后是 oc2、买一个篮球需要x元,买一个排球需要y 元买一 个足球需要z元,买3个篮球、5个排球、2个足球共需要 元3、如图三角尺的面积为 ;4、如图是一所住宅区的建筑平面图,这所住宅的建筑面积是 3x+5y+2zx2+2x+18t-5221rab 回顾 思考第6页/共26页1.在确定多项式的项时,要连同它前面的符号,2.一个多项式的次数最高项的次数是几,就说这个多项式是几次多项式。

3.在多项式中,每个单项式都是这个多项式的项,每一项都有系数,但对整个多项式来说,没有系数的概念,只有次数的概念多项式中次数最高的项的次数注意的问题:第7页/共26页(2)(2)多项式多项式:几个几个单项式的和单项式的和就是就是多项式多项式;每个单项式是该多项式的一个每个单项式是该多项式的一个项;项;每项包括每项包括它前面的它前面的符号符号,这点一定要注意这点一定要注意组成多项式的每个单项式的次数是该多项式各项的组成多项式的每个单项式的次数是该多项式各项的次次数数;“几次项几次项”中中“次次”就是指这个就是指这个次数次数;多项式的多项式的次数次数,是指示最高次项的,是指示最高次项的次数次数3)单项式和多项式是统称为整式第8页/共26页 指出下列代数式中哪些是单项式?哪些是多项式?哪些是整式?例例1 1 评析:本题需应用单项式、多项式、整式的意义来解答单项式只含有“乘积”运算;多项式必须含有加法或减法运算不论单项式还是多项式,分母中都不能含有字母解:zyxbamtsxxab322241,11,13,5,32,0单项式有:zyxxab32241,5,0多项式有:13,322mx整式有:zyxmxxab322241,13,5,32,0第9页/共26页 下面各题的判断是否正确。

下面各题的判断是否正确7xy2的系数是的系数是7;(;()x2y3与与x3没有系数;(没有系数;()ab3c2的次数是的次数是032;(;()a3的系数是的系数是1;()32x2y3的次数是的次数是7;(;()r2h的系数是的系数是 3131第10页/共26页1.1.单项式单项式mm2 2n n2 2的系数是的系数是_,_,次数是次数是_,_,mm2 2n n2 2是是_次单项式次单项式.2.2.多项式多项式x+y-z是单项式是单项式 的和的和,它是它是_次次_项式项式.3.3.多项式多项式3m3-2m-5+m2的常数项是的常数项是_,_,一次项是一次项是_,_,二次项的系数是二次项的系数是_._.144x、y、-z13-5-2m1 14.如果-5xym-1为4次单项式,则m=_.45.若-ax2yb+1是关于x、y的五次单项式,且系数为-1/2,则a=_,b=_.1/22成长的足迹6.多项式3a2b3+5a2b24ab2 共有几项,多项式的次数是多少?第三项是什么,它的系数和次数分别是多少?第11页/共26页(4)(4)根据加法的交换律和结合律,可以把一个多项式的各根据加法的交换律和结合律,可以把一个多项式的各项重新排列,移动多项式的项时,需连同项重新排列,移动多项式的项时,需连同项的符号项的符号一起一起移动,这样的移动移动,这样的移动并没有改变项的符号和多项式的值并没有改变项的符号和多项式的值。

把一个多项式按某个字母的把一个多项式按某个字母的指数从大到小的顺序指数从大到小的顺序排列排列起来叫做把该多项式按这个字母的起来叫做把该多项式按这个字母的降幂排列降幂排列;把一个多项式按某个字母的把一个多项式按某个字母的指数从小到大的顺序指数从小到大的顺序排列排列起来叫做把该多项式按这个字母的起来叫做把该多项式按这个字母的升幂排列升幂排列排列时,一定要看清楚是按哪个字母,进行什么样的排列时,一定要看清楚是按哪个字母,进行什么样的排列(升幂或降幂)排列(升幂或降幂)第12页/共26页 例例2 2 评析:对含有两个或两个以上字母的多项式重新排列,先要确定是按哪个字母升(降)幂排列,再将常数项或不含这个字母的项按照升幂排在第一项,降幂排在最后一项1)(1)按x x的升幂排列;(2)(2)按y y的降幂排列按下列要求排列将多项式723232244yxyxyxxy解:(1)(1)按x x的升幂排列:(2)(2)按y y的降幂排列:432242327xyxyxxyy723243224xxyyxyxy第13页/共26页1 1、对于、对于同类项同类项应从概念出发,掌握判断标准:应从概念出发,掌握判断标准:(1)(1)字母相同;字母相同;(2)(2)相同字母的指数相同;相同字母的指数相同;(3)(3)与系数无关;与系数无关;(4)(4)与字母的顺序无关。

与字母的顺序无关2 2、合并同类项合并同类项是整式加减的基础是整式加减的基础法则:法则:合并同类项,合并同类项,只把系数相加减,字母及字母的指数不变只把系数相加减,字母及字母的指数不变注意以下几点:注意以下几点:(前提:正确判断同类项前提:正确判断同类项)(1)(1)常数项是同类项,所以几个常数项可以合并;常数项是同类项,所以几个常数项可以合并;(2)(2)两个同类项系数互为相反数,则这两项的和等于两个同类项系数互为相反数,则这两项的和等于0 0;(3)(3)同类项中的同类项中的“合并合并”是指同类项是指同类项系数求和系数求和,把所得到,把所得到结果作为新的项的结果作为新的项的系数系数,字母与字母的指数不变字母与字母的指数不变4)(4)只有同类项才能合并,不是同类项就不能合并只有同类项才能合并,不是同类项就不能合并两相同两无关第14页/共26页1.说出下列各组中的两个单项式是不是同类项?为什么?说出下列各组中的两个单项式是不是同类项?为什么?(1)x2y与-3yx2;(2)a2b2与-ab2;(3)-3与6;(4)2a与ab2.指出指出4x2-8x+5-3x2-6x-2中的同类项中的同类项不是不是是是不是不是是是多项式中的项:多项式中的项:4x2 ,-8x ,+5 ,-3x2 ,-6x ,-2同类项:同类项:4x2与与-3x2-8x与与-6x +5与与-23.3.化简:(1)-xy2 xy2 (2)3x2y-3xy2+2x2y-2xy2第15页/共26页1.已知:已知:与与 是同类项,求是同类项,求 m、n的值的值.2_3x3my3-1 _4x6yn+12.2.已知已知:与与 能合并能合并.则则 m=m=,n=,n=.12mmx y23nx y3.3.关于关于a,ba,b的多项式的多项式不不abab含项含项.则则m=m=.222682aabbmabb4.4.如果2a2a2 2b bn+1n+1与-4a-4am mb b3 3是同类项,则m=_m=_,n=_;n=_;5.5.若5xy5xy2 2+axy+axy2 2=-2xy=-2xy2 2,则a=_;a=_;6.6.在6xy-3x6xy-3x2 2-4x-4x2 2y-5yxy-5yx2 2+x+x2 2中没有同类项的项是_2 332 276xy第16页/共26页练习(合并下列各式的同类项)(1)-xy2 xy2 (2)3x2y-3xy2+2x2y-2xy21_5(3)4a(3)4a2 2+3b+3b2 2+2ab-4a+2ab-4a2 2-4b-4b2 2(4)m-n(4)m-n2 2+m-n+m-n2 2422532xxx 下列各题合并同类项的结果对不对?若不对,下列各题合并同类项的结果对不对?若不对,请改正。

请改正1)、(2)、(3)、(4)、xyyx52343722 xx09922 baba第17页/共26页 例例1 1 若-5a-5a3 3b bm+1m+1与8a8an+1n+1b b2 2是同类项,求(m-n)(m-n)100100的值解:由同类项的定义知:m+1=2m+1=2,n+1=3n+1=3;解得m=1m=1,n=2n=2 (m-n)(m-n)100100=(1-2)=(1-2)100100=(-1)=(-1)100100=1=1 答:当m=1m=1,n=2n=2时,(m-n)(m-n)100100=1=1评析:例评析:例1 1要注意同类项概念的应用;例要注意同类项概念的应用;例2 2要注意几位要注意几位数的表示方法如:数的表示方法如:578=5578=5100100+7+71010+8+8例22如果一个两位数的个位数是十位数的4 4倍,那么这个两位数一定是7 7的倍数请说明理由解:设两位数的十位数字是x x,则它的个位数字是4x4x这个两位数可表示为:10 x+4x=14x10 x+4x=14x,14x14x是7 7的倍数,故这个两位数是7 7的倍数思考:计算(1)-a(1)-a2 2-a-a2 2-a-a2 2;(2)a(2)a3 3+a+a2 2b+abb+ab2 2-a-a2 2b-abb-ab2 2-b-b2 2第18页/共26页1 1、去括号是本章的难点之一;去括号是本章的难点之一;去括号都是多项式的恒等变形;去括号时一定对照法则把去掉括号与括号的去括号时一定对照法则把去掉括号与括号的符号看成统一体,不能拆开。

符号看成统一体,不能拆开法则:如果括号外的因数是正数,去括号后原括号内的各项的符号与原来的符号();如果括号外的因数是负数,去括号后原括号内的各项的符号与原来的符号()遇到括号前面是遇到括号前面是“-”时,容易发生漏掉括号内一部分项的变号,时,容易发生漏掉括号内一部分项的变号,所以,要注意所以,要注意“各项各项”都要都要变号变号不是只变第一项的符号不是只变第一项的符号去括号的顺口溜:去括号,看符号;去括号的顺口溜:去括号,看符号;是正号,不变号;是正号,不变号;是负号,全变号是负号,全变号相同相反第19页/共26页练一练,老师相信你们的实力!(1):12(0.5)1(2):5(1)5xx(3):(3)(4):(3)xx判断下列计算是否正确:(1):3(8)38(2):3(8)324(3):2(6)122(4):4(32)128xxxxxxxx 不正确不正确不正确正确不正确(5 5)-a-a-2a-3a-(a-1)-6-5-2a-3a-(a-1)-6-5第20页/共26页化简下列各式:利用去括号的规律进行整式的化简:(1)82(5)aba b=13a+b2(2)(5a-3b)-3(a-2b)2353aab 求 的值,其中 x=-2,y=1_2 x-2(x-2(x-1_3y2)3_2 x+(-+(-+1_3y2)2 2_3 3第21页/共26页 1、整式的加减是本章节的重点,是全章知识的综合与运用掌握了整式的加减就掌握了本章的知识。

整式加减的一般步骤是:(1)如果有括号,那么要先去括号;(2)如果有同类项,再合并同类项;第22页/共26页 例例1 1 求减去-x-x3 3+2x+2x2 2-3x-1-3x-1的差为-2x-2x2 2+3x-2+3x-2的多项式评析:把一个代数式看成整体,添上括号利用已评析:把一个代数式看成整体,添上括号利用已知减数和差,求被减数应该用加法运算知减数和差,求被减数应该用加法运算解:(-x(-x3 3+2x+2x2 2-3x-1)+(-2x-3x-1)+(-2x2 2+3x-2)+3x-2)=-x=-x3 3+2x+2x2 2-3x-1-2x-3x-1-2x2 2+3x-2=-x+3x-2=-x3 3-3-3答:所求多项式为:-x-x3 3-3-3已知a a2 2+ab=-3+ab=-3,ab+bab+b2 2=7=7,试求a a2 2+2ab+b+2ab+b2 2;a a2 2-b b2 2的值例例2 2 解:a a2 2+2ab+b+2ab+b2 2=(a=(a2 2+ab)+(ab+b+ab)+(ab+b2 2)=-3+7=4)=-3+7=4 a a2 2-b-b2 2=(a=(a2 2+ab)-(ab+b+ab)-(ab+b2 2)=-3-7=-10)=-3-7=-10评析:这是利用评析:这是利用“整体代入整体代入”思想求值的一个典型思想求值的一个典型题目,关键是利用题目,关键是利用“拆项拆项”后添加括号重新组合,后添加括号重新组合,巧妙求解。

巧妙求解第23页/共26页 乙旅行团成人数为:乙旅行团成人数为:门票费用为门票费用为:元,元,儿童的人数为:儿童的人数为:门票费用为:门票费用为:元元.总和是总和是 元元 例题、一公园的成票价是例题、一公园的成票价是15元,儿童买半票,甲旅行元,儿童买半票,甲旅行团有团有x(名)成年人和(名)成年人和y(名)儿童;乙旅行团的成人(名)儿童;乙旅行团的成人数是甲旅行团的数是甲旅行团的2倍,儿童数比甲旅行团的倍,儿童数比甲旅行团的2倍少倍少8人,人,这两个旅行团的门票费用总和各是多少?这两个旅行团的门票费用总和各是多少?解析:甲旅行团成人的门票费用为解析:甲旅行团成人的门票费用为 元,元,儿童的门票费用为:儿童的门票费用为:元总和是总和是 元元30 x2x(2y-8)7.5(2y-8)30 x+7.5(2y-8)即(30 x+15y-60)元15X7.5y(15x+7.5y)第24页/共26页 练习练习 2.2.已知a a2 2-ab=2-ab=2,4ab-3b4ab-3b2 2=-3=-3,试求a a2 2-13ab+9b-13ab+9b2 2-5-5的值1.1.化简求值:3x3x2 2-7x-(4x-3)-2x-7x-(4x-3)-2x3 3,其中x=-0.5x=-0.53.3.某人做了一道题:“一个多项式减去3x3x2 2-5x+1”-5x+1”,他误将减去3x3x2 2-5x+15x+1写为加上3x3x2 2-5x+1-5x+1,得出的结果是5x5x2 2+3x-7+3x-7。

求出这道题的正确结果提示:提示:a a2 2-13ab+9b-13ab+9b2 2-5=(a-5=(a2 2-ab)-3(4ab-3b-ab)-3(4ab-3b2 2)-5)-5 答案:答案:-1-1提示:提示:先设被减数为A A,可由已知求出多项式A A,再计算A-(A-(3x3x2 2-5x+1)-5x+1)第25页/共26页感谢您的观看第26页/共26页。

下载提示
相关文档
正为您匹配相似的精品文档