2019年高考数学真题分类汇编 8.4 直线、平面垂直的判定和性质 理考点 垂直的判定与性质1.(xx广东,7,5分)若空间中四条两两不同的直线l1,l2,l3,l4,满足l1⊥l2,l2⊥l3,l3⊥l4,则下列结论一定正确的是( )A.l1⊥l4 B.l1∥l4C.l1与l4既不垂直也不平行 D.l1与l4的位置关系不确定答案 D2.(xx课标Ⅰ,19,12分)如图,三棱柱ABC-A1B1C1中,侧面BB1C1C为菱形,AB⊥B1C.(1)证明:AC=AB1;(2)若AC⊥AB1,∠CBB1=60,AB=BC,求二面角A-A1B1-C1的余弦值.解析 (1)连结BC1,交B1C于点O,连结AO.因为侧面BB1C1C为菱形,所以B1C⊥BC1,且O为B1C及BC1的中点.又AB⊥B1C,所以B1C⊥平面ABO.由于AO⊂平面ABO,故B1C⊥AO.又B1O=CO,故AC=AB1.(2)因为AC⊥AB1,且O为B1C的中点,所以AO=CO.又因为AB=BC,所以△BOA≌△BOC.故OA⊥OB,从而OA,OB,OB1两两互相垂直.以O为坐标原点,的方向为x轴正方向,||为单位长,建立如图所示的空间直角坐标系O-xyz.因为∠CBB1=60,所以△CBB1为等边三角形,又AB=BC,则A,B(1,0,0),B1,C.=,==,==.设n=(x,y,z)是平面AA1B1的法向量,则即所以可取n=(1,,).设m是平面A1B1C1的法向量,则同理可取m=(1,-,).则cos==.所以二面角A-A1B1-C1的余弦值为.3.(xx福建,17,13分)在平面四边形ABCD中,AB=BD=CD=1,AB⊥BD,CD⊥BD.将△ABD沿BD折起,使得平面ABD⊥平面BCD,如图.(1)求证:AB⊥CD;(2)若M为AD中点,求直线AD与平面MBC所成角的正弦值.解析 (1)证明:∵平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,AB⊂平面ABD,AB⊥BD,∴AB⊥平面BCD.又CD⊂平面BCD,∴AB⊥CD.(2)过点B在平面BCD内作BE⊥BD,如图.由(1)知AB⊥平面BCD,BE⊂平面BCD,BD⊂平面BCD,∴AB⊥BE,AB⊥BD.以B为坐标原点,分别以,,的方向为x轴,y轴,z轴的正方向建立空间直角坐标系.依题意,得B(0,0,0),C(1,1,0),D(0,1,0),A(0,0,1),M,则=(1,1,0),=,=(0,1,-1).设平面MBC的法向量为n=(x0,y0,z0),则即取z0=1,得平面MBC的一个法向量为n=(1,-1,1).设直线AD与平面MBC所成角为θ,则sin θ=|cos|==,即直线AD与平面MBC所成角的正弦值为.4.(xx广东,18,13分)如图,四边形ABCD为正方形,PD⊥平面ABCD,∠DPC=30,AF⊥PC于点F,FE∥CD,交PD于点E.(1)证明:CF⊥平面ADF;(2)求二面角D-AF-E的余弦值.解析 (1)证明:∵PD⊥平面ABCD,∴PD⊥AD,又CD⊥AD,PD∩CD=D,∴AD⊥平面PCD,∴AD⊥PC,又AF⊥PC,AF∩AD=A,∴PC⊥平面ADF,即CF⊥平面ADF.(2)解法一:设AB=1,则Rt△PDC中,CD=1,∵∠DPC=30,∴PC=2,PD=,由(1)知CF⊥DF,∴DF=,∴CF=,又FE∥CD,∴==,∴DE=,同理,EF=CD=,如图所示,以D为原点,建立空间直角坐标系,则A(0,0,1),E,F,P(,0,0),C(0,1,0).设m=(x,y,z)是平面AEF的法向量,则又∴令x=4,得z=,故m=(4,0,),由(1)知平面ADF的一个法向量为=(-,1,0),设二面角D-AF-E的平面角为θ,可知θ为锐角,cos θ=|cos|===,故二面角D-AF-E的余弦值为.解法二:设AB=1,∵CF⊥平面ADF,∴CF⊥DF.∴在△CFD中,DF=,∵CD⊥AD,CD⊥PD,∴CD⊥平面ADE.又∵EF∥CD,∴EF⊥平面ADE.∴EF⊥AE,∴在△DEF中,DE=,EF=,在△ADE中,AE=,在△ADF中,AF=.由VA-DEF=S△ADEEF=S△ADFhE-ADF,解得hE-ADF=,设△AEF的边AF上的高为h,由S△AEF=EFAE=AFh,解得h=,设二面角D-AF-E的平面角为θ.则sin θ===,∴cos θ=.5.(xx辽宁,19,12分)如图,△ABC和△BCD所在平面互相垂直,且AB=BC=BD=2,∠ABC=∠DBC=120,E,F分别为AC,DC的中点.(1)求证:EF⊥BC;(2)求二面角E-BF-C的正弦值.解析 (1)证法一:过E作EO⊥BC,垂足为O,连OF.图1由△ABC≌△DBC可证出△EOC≌△FOC.所以∠EOC=∠FOC=,即FO⊥BC.又EO⊥BC,因此BC⊥面EFO.又EF⊂面EFO,所以EF⊥BC.证法二:由题意,以B为坐标原点,在平面DBC内过B作垂直BC的直线为x轴,BC所在直线为y轴,在平面ABC内过B作垂直BC的直线为z轴,建立如图2所示空间直角坐标系,易得B(0,0,0),A(0,-1,),D(,-1,0),C(0,2,0),因而E,F,所以,=,=(0,2,0),因此=0.从而⊥,所以EF⊥BC.图2(2)解法一:在图1中,过O作OG⊥BF,垂足为G,连EG.由平面ABC⊥平面BDC,从而EO⊥面BDC,又OG⊥BF,由三垂线定理知EG⊥BF.因此∠EGO为二面角E-BF-C的平面角.在△EOC中,EO=EC=BCcos 30=,由△BGO∽△BFC知,OG=FC=,因此tan∠EGO==2,从而sin∠EGO=,即二面角E-BF-C的正弦值为.解法二:在图2中,平面BFC的一个法向量为n1=(0,0,1).设平面BEF的法向量为n2=(x,y,z),又=,=,由得其中一个n2=(1,-,1).设二面角E-BF-C的大小为θ,且由题意知θ为锐角,则cos θ=|cos|==,因此sin θ==,即所求二面角的正弦值为.6.(xx湖南,19,12分)如图,四棱柱ABCD-A1B1C1D1的所有棱长都相等,AC∩BD=O,A1C1∩B1D1=O1,四边形ACC1A1和四边形BDD1B1均为矩形.(1)证明:O1O⊥底面ABCD;(2)若∠CBA=60,求二面角C1-OB1-D的余弦值.解析 (1)证明:因为四边形ACC1A1为矩形,所以CC1⊥AC.同理DD1⊥BD,因为CC1∥DD1,所以CC1⊥BD,而AC∩BD=O,因此CC1⊥底面ABCD.由题设知,O1O∥C1C,故O1O⊥底面ABCD,(2)解法一:如图,过O1作O1H⊥OB1于H,连结HC1.由(1)知,O1O⊥底面ABCD,所以O1O⊥底面A1B1C1D1,于是O1O⊥A1C1.又因为四棱柱ABCD-A1B1C1D1的所有棱长都相等,所以四边形A1B1C1D1是菱形,因此A1C1⊥B1D1,从而A1C1⊥平面BDD1B1,所以A1C1⊥OB1,于是OB1⊥平面O1HC1,进而OB1⊥C1H,故∠C1HO1是二面角C1-OB1-D的平面角,不妨设AB=2,因为∠CBA=60,所以OB=,OC=1,OB1=.在Rt△OO1B1中,易知O1H==2,而O1C1=1,于是C1H===.故cos∠C1HO1===.即二面角C1-OB1-D的余弦值为.解法二:因为四棱柱ABCD-A1B1C1D1的所有棱长都相等,所以四边形ABCD是菱形,因此AC⊥BD,又由(1)知O1O⊥底面ABCD,从而OB、OC、OO1两两垂直.如图,以O为坐标原点,OB,OC,OO1所在直线分别为x轴,y轴,z轴,建立空间直角坐标系O-xyz,不妨设AB=2,因为∠CBA=60,所以OB=,OC=1,于是相关各点的坐标为O(0,0,0),B1(,0,2),C1(0,1,2).易知,n1=(0,1,0)是平面BDD1B1的一个法向量.设n2=(x,y,z)是平面OB1C1的法向量,则即取z=-,则x=2,y=2,所以n2=(2,2,-),设二面角C1-OB1-D的大小为θ,易知θ是锐角,于是cos θ=|cos|===.故二面角C1-OB1-D的余弦值为.7.(xx江西,19,12分)如图,四棱锥P-ABCD中,ABCD为矩形,平面PAD⊥平面ABCD.(1)求证:AB⊥PD;(2)若∠BPC=90,PB=,PC=2,问AB为何值时,四棱锥P-ABCD的体积最大?并求此时平面BPC与平面DPC夹角的余弦值.解析 (1)证明:ABCD为矩形,故AB⊥AD.又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,所以AB⊥平面PAD,故AB⊥PD.(2)过P作AD的垂线,垂足为O,过O作BC的垂线,垂足为G,连结PG.故PO⊥平面ABCD,BC⊥平面POG,BC⊥PG.在Rt△BPC中,PG=,GC=,BG=.设AB=m,则OP==,故四棱锥P-ABCD的体积V=m=.因为m==,故当m=,即AB=时,四棱锥P-ABCD的体积最大.此时,建立如图所示的坐标系,各点的坐标为O(0,0,0),B,C,D,P.故=,=(0,,0),=.设平面BPC的法向量为n1=(x,y,1),则由n1⊥,n1⊥得解得x=1,y=0,n1=(1,0,1).同理可求出平面DPC的法向量为n2=.从而平面BPC与平面DPC夹角θ的余弦值为cos θ===.8.(xx浙江,20,15分)如图,在四棱锥A-BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90,AB=CD=2,DE=BE=1,AC=.(1)证明:DE⊥平面ACD;(2)求二面角B-AD-E的大小.解析 (1)证明:在直角梯形BCDE中,由DE=BE=1,CD=2,得BD=BC=,由AC=,AB=2,得AB2=AC2+BC2,即AC⊥BC,又平面ABC⊥平面BCDE,从而AC⊥平面BCDE,所以AC⊥DE.又DE⊥DC,从而DE⊥平面ACD.(2)解法一:作BF⊥AD,与AD交于点F,过点F作FG∥DE,与AE交于点G,连结BG,由(1)知DE⊥AD,则FG⊥AD.所以∠BFG是二面角B-AD-E的平面角.在直角梯形BCDE中,由CD2=BC2+BD2,得BD⊥BC,又平面ABC⊥平面BCDE,得BD⊥平面ABC,从而BD⊥AB.由于AC⊥平面BCDE,得AC⊥CD.在Rt△ACD中,由DC=2,AC=,得AD=.在Rt△AED中,由ED=1,AD=,得AE=.在Rt△ABD中,由BD=,AB=2,AD=,得BF=,AF=AD.从而GF=.在△ABE,△ABG中,利用余弦定理分别可得cos∠BAE=,BC=.在△BFG中,cos∠BFG==.所以,∠BFG=,即二面角B-AD-E的大小是.解法二:以D为原点,分别以射线DE,DC为x轴,y轴的正半轴,建立空间直角坐标系D-xyz,如图所示.由题意知各点坐标如下:D(0,0,0),E(1,0,0),C(0,2,0),A(0,2,),B(1,1,0).设平面ADE的法向量为m=(x1,y1,z1),平面ABD的法向量为n=(x2,y2,z2),可算得=(0,-2,-),=(1,-2,-),=(1,1,0),由即可取m=(0,1,-).由即可取n=(1,-1,).于是|cos|===,由题意可知,所求二面角是锐角,故二面角B-AD-E的大小是.。