高中数学教学设计大赛获奖作品汇编(上 部)目 录1、集合与函数概念实习作业……………………………………2、指数函数的图象及其性质……………………………………3、对数的概念…………………………………………………4、对数函数及其性质(1)……………………………………5、对数函数及其性质(2)……………………………………6、函数图象及其应用……………………………………7、方程的根与函数的零点……………………………………8、用二分法求方程的近似解……………………………………9、用二分法求方程的近似解……………………………………10、直线与平面平行的判定……………………………………11、循环结构 …………………………………………………12、任意角的三角函数(1)…………………………………13、任意角的三角函数(2)……………………………………14、函数的图象…………………………15、向量的加法及其几何意义………………………………………16、平面向量数量积的物理背景及其含义(1)………………17、平面向量数量积的物理背景及其含义(2)……………………18、正弦定理(1)……………………………………………………19、正弦定理(2)……………………………………………………20、正弦定理(3)……………………………………………………21、余弦定理………………………………………………22、等差数列………………………………………………23、等差数列的前n项和………………………………………24、等比数列的前n项和………………………………………25、简单的线性规划问题………………………………………26、拋物线及其标准方程………………………………………27、圆锥曲线定义的运用………………………………………前 言为了更好地贯彻落实和科课程标准有关要求,促进广大教师学习现代教学理论,进一步激发广大教师课堂教学的创新意识,切实转变教学观念,积极探索新课程理念下的教与学,有效解决教学实践中存在的问题,促进课堂教学质量的全面提高,在2007年由福建省普通教育教学研究室组织,举办了一次教学设计大赛活动。
这次活动数学学科高中组共收到有49篇教学设计文章获奖文章推荐评审专家组本着公平、公正的原则,经过认真的评审,全部作品均评出了相应的奖项;专家组还为获得一、二等奖的作品撰写了点评本稿收录的作品全部是参加此次福建省教学设计竞赛获奖作者的文章按照征文的规则,我们对入选作品的格式作了一些修饰,并经过适当的整合,以飨读者在此还需要说明的是,为了方便阅读,获奖文章的排序原则,并非按照获奖名次的前后顺序,而是按照高中数学新课程必修1—5的内容顺序,进行编排的部分体现大纲教材内容的文章则排在后面不管你获得的是哪个级别的奖项,你们都可以有成就感,因为那是你们用心、用汗浇灌出的果实,它记录了你们奉献于数学教育事业的心路历程.书中每一篇的教学设计都耐人寻味,都能带给我们许多遐想和启迪.你们是优秀的,在你们未来悠远的职业里程中,只要努力,将有更多的辉煌在等待着大家谢谢你们!编者 2008-3-23 于福州1、集合与函数概念实习作业一、教学内容分析《普通高中课程标准实验教科书·数学(1)》(人教A版)第44页《实习作业》本节课程体现数学文化的特色,学生通过了解函数的发展历史进一步感受数学的魅力。
学生在自己动手收集、整理资料信息的过程中,对函数的概念有更深刻的理解;感受新的学习方式带给他们的学习数学的乐趣二、学生学习情况分析该内容在《普通高中课程标准实验教科书·数学(1)》(人教A版)第44页学生第一次完成《实习作业》,积极性高,有热情和新鲜感,但缺乏经验,所以需要教师精心设计,做好准备工作,充分体现教师的“导演”角色特别在分组时注意学生的合理搭配(成绩的好坏、家庭有无电脑、男女生比例、口头表达能力等),选题时,各组之间尽量不要重复,尽量多地选不同的题目,可以让所有的学生在学习共享的过程中受到更多的数学文化的熏陶三、设计思想《标准》强调数学文化的重要作用,体现数学的文化的价值数学教育不仅应该帮助学生学习和掌握数学知识和技能,还应该有助于学生了解数学的价值让学生逐步了解数学的思想方法、理性精神,体会数学家的创新精神,以及数学文明的深刻内涵四、教学目标1.了解函数概念的形成、发展的历史以及在这个过程中起重大作用的历史事件和人物;2.体验合作学习的方式,通过合作学习品尝分享获得知识的快乐;3.在合作形式的小组学习活动中培养学生的领导意识、社会实践技能和民主价值观五、教学重点和难点重点:了解函数在数学中的核心地位,以及在生活里的广泛应用;难点:培养学生合作交流的能力以及收集和处理信息的能力。
六、教学过程设计【课堂准备】1.分组:4~6人为一个实习小组,确定一人为组长教师需要做好协调工作,确保每位学生都参加2.选题:根据个人兴趣初步确定实习作业的题目教师应该到各组中去了解选题情况,尽量多地选择不同的题目参考题目:(1)函数产生的社会背景;(2)函数概念发展的历史过程;(3)函数符号的故事;(4)数学家(如:开普勒、伽利略、笛卡儿、牛顿、莱布尼兹、贝努利、欧拉、柯西、狄里克雷、罗巴契夫斯基等)与函数;(5)也可自拟题目3.分配任务:根据个人情况和优势,经小组共同商议,由组长确定每人的具体任务4.搜集资料:针对所选题目,通过各种方式(相关书籍----《函数在你身边》、《世界函数通史》、《世界著名科学家传记》等;相关网页---WWW、200605/43459.html等)搜集素材,包括文字、图片、数据以及音像资料等,并记录相关资料,写出实习报告实习报告 年 月 日题目组长及参加人员教师审核意见及等级正文备注(指出参考文献或相关网页)5.投影仪、多媒体;6.把各组的实习报告,贴在班级的学习栏内,让学生学习交流教学过程】1.出示课题:交流、分享实习报告2.交流、分享:(由数学科代表主持。
小组推荐中心发言人;以下记录均为发言概述)(1)学生1:函数小史数学史表明,重要的数学概念的产生和发展,对数学发展起着不可估量的作用有些重要的数学概念对数学分支的产生起着奠定性的作用我们刚学过的函数就是这样的重要概念在笛卡尔引入变量以后,变量和函数等概念日益渗透到科学技术的各个领域最早提出函数(function)概念的,是17世纪德国数学家莱布尼茨最初莱布尼茨用“函数”一词表示幂1755年,瑞士数学家欧拉把给出了不同的函数定义中文数学书上使用的“函数”一词是转译词是我国清代数学家李善兰在翻译《代数学》(1895年)一书时,把“function”译成“函数”的我们可以预计到,关于函数的争论、研究、发展、拓广将不会完结,也正是这些影响着数学及其相邻学科的发展2)教师带头鼓掌并简单评价(3)学生2: 函数概念的纵向发展 :该同学从早期函数概念——几何观念下的函数到十八世纪函数概念——代数观念下的函数讲述了函数概念的发展其中包括18世纪中叶著名的数学家欧拉对函数概念发展的贡献接着又讲述了十九世纪函数概念——对应关系下的函数以及现代函数概念——集合论下的函数函数概念的定义经过三百多年的锤炼、变革,形成了函数的现代定义形式。
4)教师带头鼓掌并简单评价(5)学生3:我国数学家李国平与函数学生3描述了数学家中国科学院数学物理学部委员.李国平(1910—1996),的身世和他的成长历程李国平1933年毕业于中山大学数学天文系后历任中国科学院数学计算技术研究所所长,中国科学院武汉数学物理研究所所长,中国数学会理事,中国科学院学部委员等职务学生还通俗地讲述了李国平先生在微分方程复变函数论领域的卓越贡献6)教师带头鼓掌并简单评价(7)学生4:函数概念对数学发展的影响该学生从历史上重要数学概念对数学发展的作用是不可估量的事实出发,讲述了函数概念对数学发展的深刻影响,可以说是贯穿古今、旷日持久、作用非凡,回顾函数概念的历史发展,看一看函数概念不断被精炼、深化、丰富的历史过程,是一件十分有益的事情,它不仅有助于我们提高对函数概念来龙去脉认识的清晰度,而且更能帮助我们领悟数学概念对数学发展,数学学习的巨大作用. 函数概念来源于代数学中不定方程的研究.由于罗马时代的丢番图对不定方程已有相当研究,所以函数概念至少在那时已经萌芽.该学生说道,早在函数概念尚未明确提出以前,数学家已经接触并研究了不少具体的函数,比如对数函数、三角函数、双曲函数等等.1673年前后笛卡儿在他的解析几何中,已经注意到了一个变量对于另一个变量的依赖关系,但由于当时尚未意识到需要提炼一般的函数概念,因此直到17世纪后期牛顿、莱布尼兹建立微积分的时候,数学家还没有明确函数的一般意义. 从以上函数概念发展的全过程中,我们体会到,联系实际、联系大量数学素材,研究、发掘、拓广数学概念的内涵是何等重要.(8)教师带头鼓掌并简单评价(9)学生5:函数概念的历史演变过程该学生说,数学的抽象完全舍弃了事物的质的内容,而仅仅保留了它们的量的属性,即数学抽象的目的只是数量关系和空间形式.这就决定了数学与其它自然科学的区别,也决定了数学的特殊性.如果在两个集合元素之间存在有确定的对应关系,就称为是一个映射.上述函数概念的历史演变过程,就是一系列弱抽象的过程.学生展示了下表:早期函数概念代 数 函 数函数是这样一个量,它是通过其它一些量的代数运算得到的近代函数概念映 射 函 数设M与N是两个集合,f是个法则,若对于m中每一个元素x,由f总有N中唯一确定元素y与之对应,则f是定义在M上的一个函数.在认识自然、改造自然的过程中不断遇到:在数量上描述一些现象的几个不同的量是紧密地互相联系的,一个量完全决定于其它量的值,即通过其它量值的一些代数运算18世纪函数概念解 析 函 数函数是指由一个变量与一些常量通过任何方式形成的解析表达式19世纪函数概念变 量 函 数对于给定区间上的每一个x值,y总有唯一确定的值与之对应,则称y是x的函数.(10)教师带头鼓掌并简单评价3.课堂小结:4.实习作业的评定:实习作业评价参考意见级别标准很好1.小组配合默契(有计划、任务分配合理、每人积极认真)2.报告材料丰富、可靠、线索清晰3.拥有自己的独立见解好1.小组配合良好2.报告材料丰富、可靠、线索较清晰3.有一定的独立见解一般1.小组配合一般2.报告材料一般、线索基本清晰3.有一定的分析较差1.小组配合欠佳2.报告材料贫乏、线索不够清晰七、教学反思实习作业是新课程的一个亮点。
是培养学生的团队精神,体验合作学习的方式的重要途径但事实上,实习作业很容易被教师所忽视,所以想通过该教学设计引起教师们的重视在高一刚开始的时候,如何做好第一次实习作业,是很关键的就我们学校条件和学生情况,完全可以做好实习作业的,事实证明学生做得很好可以通过这次实习作业,让学生体验合作学习的方式,通过合作学习品尝分享获得知识的快乐再者,通过对数学家的了解,感受数学家的精神,增加学好数学的信心,为今后的学习打下好的基础福鼎市第一中学 曹齐平点 评该教学设计具有一定的创新性,在教师的引导下,以学生合作学习的模式,探讨函数概念的形成、发展的历史以及在这个过程中起重大作用的历史事件和人物通过学生的自主学习、探究活动,学生经历收集信息,整理资料,并从中提取有用信息的过程,让学生体验数学知识发现和创造的历程,对于提高学生的数学表达和交流的能力具有一定意义但该设计中教师的主导地位体现得不够,教师对学生的评价不够具体(只有鼓掌)2、指数函数的图象及其性质一、 教学内容分析本节课是《普通高中课程标准实验教科书·数学(1)》(人教A版)第二章第一节第二课(2.1.2)《指数函数及其性质》根据我所任教的学生的实际情况,我将《指数函数及其性质》划分为两节课(探究图象及其性质,指数函数及其性质的应用),这是第一节课“探究图象及其性质”。
指数函数是重要的基本初等函数之一,作为常见函数,它不仅是今后学习对数函数和幂函数的基础,同时在生活及生产实际中有着广泛的应用,所以指数函数应重点研究二、 学生学习况情分析指数函数是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,是学生对函数概念及性质的第一次应用教材在之前的学习中给出了两个实际例子(GDP的增长问题和炭14的衰减问题),已经让学生感受到指数函数的实际背景,但这两个例子背景对于学生来说有些陌生本节课先设计一个看似简单的问题,通过超出想象的结果来激发学生学习新知的兴趣和欲望三、设计思想 1.函数及其图象在高中数学中占有很重要的位置如何突破这个即重要又抽象的内容,其实质就是将抽象的符号语言与直观的图象语言有机的结合起来,通过具有一定思考价值的问题,激发学生的求知欲望――持久的好奇心我们知道,函数的表示法有三种:列表法、图象法、解析法,以往的函数的学习大多只关注到图象的作用,这其实只是借助了图象的直观性,只是从一个角度看函数,是片面的本节课,力图让学生从不同的角度去研究函数,对函数进行一个全方位的研究,并通过对比总结得到研究的方法,让学生去体会这种的研究方法,以便能将其迁移到其他函数的研究中去。
2.结合参加我校组织的两个课题《对话——反思——选择》和《新课程实施中同伴合作和师生互动研究》的研究,在本课的教学中我努力实践以下两点:⑴.在课堂活动中通过同伴合作、自主探究培养学生积极主动、勇于探索的学习方式⑵.在教学过程中努力做到生生对话、师生对话,并且在对话之后重视体会、总结、反思,力图在培养和发展学生数学素养的同时让学生掌握一些学习、研究数学的方法3.通过课堂教学活动向学生渗透数学思想方法四、教学目标根据任教班级学生的实际情况,本节课我确定的教学目标是:理解指数函数的概念,能画出具体指数函数的图象;在理解指数函数概念、性质的基础上,能应用所学知识解决简单的数学问题;在教学过程中通过类比,回顾归纳从图象和解析式这两种不同角度研究函数性质的数学方法,加深对指数函数的认识,让学生在数学活动中感受数学思想方法之美、体会数学思想方法之重要;同时通过本节课的学习,使学生获得研究函数的规律和方法;培养学生主动学习、合作交流的意识五、教学重点与难点教学重点:指数函数的概念、图象和性质教学难点:对底数的分类,如何由图象、解析式归纳指数函数的性质六、教学过程:(一)创设情景、提出问题(约3分钟)师:如果让1号同学准备2粒米,2号同学准备4粒米,3号同学准备6粒米,4号同学准备8粒米,5号同学准备10粒米,……按这样的规律,51号同学该准备多少米?学生回答后教师公布事先估算的数据:51号同学该准备102粒米,大约5克重。
师:如果改成让1号同学准备2粒米,2号同学准备4粒米,3号同学准备8粒米,4号同学准备16粒米,5号同学准备32粒米,……按这样的规律,51号同学该准备多少米?【学情预设:学生可能说很多或能算出具体数目】师:大家能否估计一下,51号同学该准备的米有多重?教师公布事先估算的数据:51号同学所需准备的大米约重1.2亿吨师:1.2亿吨是一个什么概念?根据2007年9月13日美国农业部发布的最新数据显示,2007~2008年度我国大米产量预计为1.27亿吨这就是说51号同学所需准备的大米相当于2007~2008年度我国全年的大米产量!【设计意图:用一个看似简单的实例,为引出指数函数的概念做准备;同时通过与一次函数的对比让学生感受指数函数的爆炸增长,激发学生学习新知的兴趣和欲望在以上两个问题中,每位同学所需准备的米粒数用表示,每位同学的座号数用表示,与之间的关系分别是什么?学生很容易得出y=2x()和()【学情预设:学生可能会漏掉的取值范围,教师要引导学生思考具体问题中的范围二)师生互动、探究新知1.指数函数的定义师:其实,在本章开头的问题2中,也有一个与类似的关系式()⑴让学生思考讨论以下问题(问题逐个给出):(约3分钟)①()和()这两个解析式有什么共同特征?②它们能否构成函数?③是我们学过的哪个函数?如果不是,你能否根据该函数的特征给它起个恰当的名字?【设计意图:引导学生从具体问题、实际问题中抽象出数学模型。
学生对比已经学过一次函数、反比例函数、二次函数,发现,是一个新的函数模型,再让学生给这个新的函数命名,由此激发学生的学习兴趣引导学生观察,两个函数中,底数是常数,指数是自变量师:如果可以用字母代替其中的底数,那么上述两式就可以表示成的形式自变量在指数位置,所以我们把它称作指数函数⑵让学生讨论并给出指数函数的定义约6分钟)对于底数的分类,可将问题分解为:①若会有什么问题?(如,则在实数范围内相应的函数值不存在)②若 会有什么问题?(对于 ,都无意义)③若 又会怎么样?(无论 取何值,它总是1,对它没有研究的必要.)师:为了避免上述各种情况的发生,所以规定 且 .在这里要注意生生之间、师生之间的对话学情预设: ①若学生从教科书中已经看到指数函数的定义,教师可以问,为什么要求;为什么不行?②若学生只给出,教师可以引导学生通过类比一次函数()、反比例函数()、二次函数()中的限制条件, 思考指数函数中底数的限制条件 【设计意图 :①对指数函数中底数限制条件的讨论可以引导学生研究一个函数应注意它的实际意义和研究价值;②讨论出,也为下面研究性质时对底数的分类做准备接下来教师可以问学生是否明确了指数函数的定义,能否写出一两个指数函数?教师也在黑板上写出一些解析式让学生判断,如,,。
学情预设:学生可能只是关注指数是否是变量,而不考虑其它的设计意图 :加深学生对指数函数定义和呈现形式的理解2.指数函数性质⑴提出两个问题(约3分钟)①目前研究函数一般可以包括哪些方面;【设计意图:让学生在研究指数函数时有明确的目标:函数三个要素(对应法则、定义域、值域、)和函数的基本性质(单调性、奇偶性)②研究函数(比如今天的指数函数)可以怎么研究?用什么方法、从什么角度研究?可以从图象和解析式这两个不同的角度进行研究;可以从具体的函数入手(即底数取一些数值);当然也可以用列表法研究函数,只是今天我们所学的函数用列表法不易得出此函数的性质,可见具体问题要选择适当的方法来研究才能事半功倍!还可以借助一些数学思想方法来思考设计意图:①让学生知道图象法不是研究函数的唯一方法,由此引导学生可以从图象和解析式(包括列表)不同的角度对函数进行研究;②对学生进行数学思想方法(从一般到特殊再到一般、数形结合、分类讨论)的有机渗透⑵分组活动,合作学习(约8分钟)师:好,下面我们就从图象和解析式这两个不同的角度对指数函数进行研究①让学生分为两大组,一组从解析式的角度入手(不画图)研究指数函数,一组借助电脑通过几何画板的操作从图象的角度入手研究指数函数;②每一大组再分为若干合作小组(建议4人一小组);③每组都将研究所得到的结论或成果写出来以便交流。
学情预设:考虑到各组的水平可能有所不同,教师应巡视,对个别组可做适当的指导设计意图:通过自主探索、合作学习不仅让学生充当学习的主人更可加深对所得到结论的理解⑶交流、总结(约10~12分钟)师:下面我们开一个成果展示会!教师在巡视过程中应关注各组的研究情况,此时可选一些有代表性的小组上台展示研究成果,并对比从两个角度入手研究的结果教师可根据上课的实际情况对学生发现、得出的结论进行适当的点评或要求学生分析这里除了研究定义域、值域、单调性、奇偶性外,再引导学生注意是否还有其它性质?师:各组在研究过程中除了定义域、值域、单调性、奇偶性外是否还得到一些有价值的副产品呢?(如过定点(0,1),与的图象关于y轴对称)【学情预设: ①首先选一从解析式的角度研究的小组上台汇报;②对于从图象的角度研究的,可先选没对底数进行分类的小组上台汇报;③问其它小组有没不同的看法,上台补充,让学生对底数进行分类,引导学生思考哪个量决定着指数函数的单调性,以什么为分界,教师可以马上通过电脑操作看函数图象的变化设计意图: ①函数的表示法有三种:列表法、图象法、解析法,通过这个活动,让学生知道研究一个具体的函数可以也应该从多个角度入手,从图象角度研究只是能直观的看出函数的一些性质,而具体的性质还是要通过对解析式的论证;特别是定义域、值域更是可以直接从解析式中得到的。
②让学生上台汇报研究成果,让学生有种成就感,同时还可训练其对数学问题的分析和表达能力,培养其数学素养;③对指数函数的底数进行分类是本课的一个难点,让学生在讨论中自己解决分类问题使该难点的突破显得自然师:从图象入手我们很容易看出函数的单调性、奇偶性、以及过定点(0,1),但定义域、值域却不可确定;从解析式(结合列表)可以很容易得出函数的定义域、值域,但对底数的分类却很难想到教师通过几何画板中改变参数的值,追踪的图象,在变化过程中,让全体学生进一步观察指数函数的变化规律 师生共同总结指数函数的图象和性质,教师可以边总结边板书图 象01定义域 R值 域 性质过定点(0,1)非奇非偶在R上是减函数在R上是增函数(三)巩固训练、提升总结(约8分钟)1.例:已知指数函数的图象经过点,求的值解:因为的图象经过点,所以即,解得,于是设计意图:通过本题加深学生对指数函数的理解师:根据本题,你能说出确定一个指数函数需要什么条件吗?师:从方程思想来看,求指数函数就是确定底数,因此只要一个条件,即布列一个方程就可以了设计意图:让学生明确底数是确定指数函数的要素,同时向学生渗透方程的思想。
2.练习:⑴在同一平面直角坐标系中画出和的大致图象,并说出这两个函数的性质; ⑵求下列函数的定义域:①,②3.师:通过本节课的学习,你对指数函数有什么认识?你有什么收获?【学情预设:学生可能只是把指数函数的性质总结一下,教师要引导学生谈谈对函数研究的学习,即怎么研究一个函数设计意图:①让学生再一次复习对函数的研究方法(可以从也应该从多个角度进行),让学生体会本课的研究方法,以便能将其迁移到其他函数的研究中去②总结本节课中所用到的数学思想方法③强调各种研究数学的方法之间有区别又有联系,相互作用,才能融会贯通4.作业:课本59页习题2.1A组第5题七、教学反思1.本节课改变了以往常见的函数研究方法,让学生从不同的角度去研究函数,对函数进行一个全方位的研究,不仅仅是通过对比总结得到指数函数的性质,更重要的是让学生体会到对函数的研究方法,以便能将其迁移到其他函数的研究中去,教师可以真正做到“授之以渔”而非“授之以鱼”2.教学中借助信息技术可以弥补传统教学在直观感、立体感和动态感方面的不足,可以很容易的化解教学难点、突破教学重点、提高课堂效率,本课使用几何画板可以动态地演示出指数函数的底数的动态过程,让学生直观观察底数对指数函数单调性的影响。
3.在教学过程中不断向学生渗透数学思想方法,让学生在活动中感受数学思想方法之美、体会数学思想方法之重要,部分学生还能自觉得运用这些数学思想方法去分析、思考问题福州十一中 胡鹏程点评:本节是指数函数及其性质概念课,胡老师在教学设计中,让人印象深刻的是以学生为主体,注重学法指导,重视新旧知识的契合,关注知识的类比,学习方法的迁移胡老师能够抓住学生的好奇心,将娱乐“计算米粒”与数学有机地结合在一起,提高了学生学习本节知识的兴趣在观察“准备米粒”得到和章开头()函数关系式后,巧妙而不失时机地引导学生从具体问题中抽象出数学模型,发现指数在变化,这与以前所学函数(一次函数、二次函数、反比例函数)都不一样,把变化的量用表示,不变的量用a表示;通过让学生给函数命名,举几个指数函数例子这个小环节,增强学生对指数函数本质的理解,激发学习兴趣,概念的得到可谓“润物细无声”接着,胡老师在设计中还注重对学生探索能力的培养,让学生类比一次函数()、反比例函数()、二次函数()中的限制条件,给出指数函数的定义及底数的取值范围在研究指数函数的性质时,胡老师能够紧扣第一章的函数知识,让学生在研究指数函数时有明确的目标:函数三个要素(对应法则、定义域、值域、)和函数的基本性质(单调性、奇偶性)。
通过提问的方法,让学生明白研究函数可以从图象和解析式这两个不同的角度进行出发,将学生的注意力引向本节的第二个知识点——图象及其性质设计中将学生进行分组,通过学生的自主探究、合作学习,侧重对解析式、作图象探索学生的上台报告,老师借助几何画板的直观图形,以形助数,以数定形,数形结合的数学方法,收到了较好的研究效果3、对数的概念一、教学内容分析本节课是新课标高中数学A版必修①中第二章对数函数内容的第一课时,也就是对数函数的入门对数函数对于学生来说是一个全新的函数模型,学习起来比较困难而对数函数又是本章的重要内容,在高考中占有一定的分量,它是在指数函数的基础上,对函数类型的拓广,同时在解决一些日常生活问题及科研中起十分重要的作用通过本节课的学习,可以让学生理解对数的概念,从而进一步深化对对数模型的认识与理解,为学习对数函数作好准备同时,通过对数概念的学习,对培养学生对立统一,相互联系、相互转化的思想,培养学生的逻辑思维能力都具有重要的意义二、学生学习情况分析现阶段大部分学生学习的自主性较差,主动性不够,学习有依赖性,且学习的信心不足,对数学存在或多或少的恐惧感通过对指数与指数幂的运算的学习,学生已多次体会了对立统一、相互联系、相互转化的思想,并且探究能力、逻辑思维能力得到了一定的锻炼。
因此,学生已具备了探索发现研究对数定义的认识基础,故应通过指导,教会学生独立思考、大胆探索和灵活运用类比、转化、归纳等数学思想的学习方法三、设计思想学生是教学的主体,本节课要给学生提供各种参与机会为了调动学生学习的积极性,使学生化被动为主动本节课我利用多媒体辅助教学,教学中我引导学生从实例出发,从中认识对数的模型,体会引入对数的必要性在教学重难点上,我步步设问、启发学生的思维,通过课堂练习、探究活动,学生讨论的方式来加深理解,很好地突破难点和提高教学效率让学生在教师的引导下,充分地动手、动口、动脑,掌握学习的主动权四、教学目标1、理解对数的概念,了解对数与指数的关系;掌握对数式与指数式的互化;理解对数的性质,掌握以上知识并形成技能2、通过事例使学生认识对数的模型,体会引入对数的必要性;通过师生观察分析得出对数的概念及对数式与指数式的互化3、通过学生分组探究进行活动,掌握对数的重要性质通过做练习,使学生感受到理论与实践的统一4、培养学生的类比、分析、归纳能力,严谨的思维品质以及在学习过程中培养学生探究的意识五、教学重点与难点重点 :(1)对数的概念;(2)对数式与指数式的相互转化难点 :(1)对数概念的理解;(2)对数性质的理解。
六、教学过程设计教学环节教学程序及设计设计意图创设情境引入新 课引例(3分钟)1、一尺之棰,日取其半,万世不竭1)取5次,还有多长?(2)取多少次,还有0.125尺?分析:(1)为同学们熟悉的指数函数的模型,易得(2)可设取x次,则有 抽象出: 2、2002年我国GPD为a亿元,如果每年平均增长8%,那么经过多少年GPD是2002年的2倍?分析:设经过x年,则有抽象出: 让学生根据题意,设未知数,列出方程这两个例子都出现指数是未知数x的情况,让学生思考如何表示x,激发其对对数的兴趣,培养学生的探究意识生活及科研中还有很多这样的例子,因此引入对数是必要的 讲授新课讲授新课讲授新课一、对数的概念(3分钟)一般地,如果a(a>0且a≠1)的b次幂等于N, 就是 =N 那么数 b叫做 a为底 N的对数,记作,a叫做对数的底数,N叫做真数注意:①底数的限制:a>0且a≠1②对数的书写格式正确理解对数定义中底数的限制,为以后对数函数定义域的确定作准备同时注意对数的书写,避免因书写不规范而产生的错误二、对数式与指数式的互化:(5分钟)幂底数 ← a → 对数底数指数 ← b → 对数幂 ← N → 真数思考:①为什么对数的定义中要求底数a>0且a≠1? ②是否是所有的实数都有对数呢?负数和零没有对数让学生了解对数与指数的关系,明确对数式与指数式形式的区别,a、b和N位置的不同,及它们的含义。
互化体现了等价转化这个重要的数学思想三、两个重要对数(2分钟)①常用对数:以10为底的对数,简记为: lgN ②自然对数:以无理数e=2.71828…为底的对数的对数简记为: lnN . (在科学技术中,常常使用以e为底的对数)注意:两个重要对数的书写这两个重要对数一定要掌握,为以后的解题以及换底公式做准备课堂练习(7分钟)1 将下列指数式写成对数式:(1) (2) (3) (4)2 将下列对数式写成指数式:(1) (2) (3)3 求下列各式的值:(1) (2)本练习让学生独立阅读课本P69例1和例2后思考完成,从而熟悉对数式与指数式的相互转化,加深对对数的概念的理解并要求学生指出对数式与指数式互化时应注意哪些问题培养学生严谨的思维品质四、对数的性质(12分钟)探究活动1讲授新课求下列各式的值:(1) 0 (2) 0 (3) 0 (4) 0 思考:你发现了什么?“1”的对数等于零,即 类比: 探究活动由学生独立完成后,通过思考,然后分小组进行讨论,最后得出结论通过练习与讨论的方式,让学生自己得出结论,从而更能好地理解和掌握对数的性质。
培养学生类比、分析、归纳的能力最后,将学生归纳的结论进行小结,从而得到对数的基本性质 探究活动2求下列各式的值:(1) 1 (2) 1 (3) 1 (4) 1 思考:你发现了什么?底数的对数等于“1”,即 类比: 探究活动3求下列各式的值:(1) 3 (2) 0.6 (3) 89 思考:你发现了什么?对数恒等式:探究活动4求下列各式的值:(1) 4 (2) 5 讲授新课(3) 8 思考:你发现了什么?对数恒等式:负数和零没有对数小 “1”的对数等于零,即底数的对数等于“1”,即结 对数恒等式:对数恒等式:将学生归纳的结论进行小结,从而得到对数的基本性质巩固练习(10分钟)1、课本P70 练习 2、提高训练(1)已知x满足等式,求值(2)求值:巩固指数式与对数式的互化,巩固对数的基本性质及其应用归纳小结强化思想(3分钟)1、 引入对数的必要性----对数的概念一般地,如果a(a>0且a≠1)的b次幂等于N,就是 =N,那么数b叫做以a为底,N的对数记作 2 、指数与对数的关系3、对数的基本性质负数和零没有对数 对数恒等式: 总结是一堂课内容的概括,有利于学生系统地掌握所学内容。
同时,将本节内容纳入已有的知识系统中,发挥承上启下的作用为下一课时对数的运算打下扎实的基础 作业布置一、课本P82 习题2.2 A组 第1、2题二、已知,求的值三、求下列各式的值: 作业是学生信息的反馈,教师可以在作业中发现学生在学习中存在的问题,弥补教学中的不足板书设计§2.2.1 对数的概念引例1引例2一、对数的定义二、对数式与指数式的互化练习三、对数的基本性质四、小结五、作业布置七、教学反思本教学设计先由引例出发,创设情境,激发学生对对数的兴趣;在讲授新课部分,通过结合多媒体教学以及一系列的课堂探究活动,加深学生对对数的认识;最后通过课堂练习来巩固学生对对数的掌握古田一中 林宁宁点评:对数概念是高中数学课程的重要内容本文目标的制订具体、适宜,且明确地体现在每一教学环节中,教学思路设计符合教学内容实际和学生实际,层次脉络较清晰强调对数的概念的理解,对数式与指数式的相互转化,对书写规格等做了要求,有利于学生作业的规范化,培养学生严谨的思维品质高中新课程在教学方面所倡导的新的教学理念,对于促进课堂教学中学生学习方式的变革起到了巨大作用然而,这些理念在指导我们重建课堂教学时也表现出限定的有效性。
只有对此有客观和充分的认识,我们才不至于生搬硬套,适得其反,从一个极端走向另一个极端教无定法,重在得法,只要能激发学生的学习兴趣,提高学生的学习积极性,有助于学生思维能力的培养,有利于所学知识的掌握和运用,达到课堂教学的效果,都应该是好的教学方法4、对数函数及其性质(1) 一、 教材分析本小节选自《普通高中课程标准数学教科书-数学必修(一)》(人教版)第二章基本初等函数(1)2.2.2对数函数及其性质(第一课时),主要内容是学习对数函数的定义、图象、性质及初步应用对数函数是继指数函数之后的又一个重要初等函数,无论从知识或思想方法的角度对数函数与指数函数都有许多类似之处与指数函数相比,对数函数所涉及的知识更丰富、方法更灵活,能力要求也更高学习对数函数是对指数函数知识和方法的巩固、深化和提高,也为解决函数综合问题及其在实际上的应用奠定良好的基础虽然这个内容十分熟悉,但新教材做了一定的改动,如何设计能够符合新课标理念,是人们十分关注的,正因如此,本人选择这课题立求某些方面有所突破二、 学生学习情况分析刚从初中升入高一的学生,仍保留着初中生许多学习特点,能力发展正处于形象思维向抽象思维转折阶段,但更注重形象思维。
由于函数概念十分抽象,又以对数运算为基础,同时,初中函数教学要求降低,初中生运算能力有所下降,这双重问题增加了对数函数教学的难度教师必须认识到这一点,教学中要控制要求 的拔高,关注学习过程三、设计理念本节课以建构主义基本理论为指导,以新课标基本理念为依据进行设计的,针对学生的学习背景,对数函数的教学首先要挖掘其知识背景贴近学生实际,其次,激发学生的学习热情,把学习的主动权交给学生,为他们提供自主探究、合作交流的机会,确实改变学生的学习方式四、教学目标1.通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;2.能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点;3.通过比较、对照的方法,引导学生结合图象类比指数函数,探索研究对数函数的性质,培养学生运用函数的观点解决实际问题五、教学重点与难点重点是掌握对数函数的图象和性质,难点是底数对对数函数值变化的影响.六、教学过程设计 教学流程:背景材料→ 引出课题 → 函数图象→ 函数性质 →问题解决→归纳小结(一)熟悉背景、引入课题1.让学生看材料:材料1(幻灯):马王堆女尸千年不腐之谜:一九七二年,马王堆考古发现震惊世界,专家发掘西汉辛追遗尸时,形体完整,全身润泽,皮肤仍有弹性,关节还可以活动,骨质比现在六十岁的正常人还好,是世界上发现的首例历史悠久的湿尸。
大家知道,世界发现的不腐之尸都是在干燥的环境风干而成,譬如沙漠环境,这类干尸虽然肌肤未腐,是因为干燥不利细菌繁殖,但关节和一般人死后一样,是僵硬的,而马王堆辛追夫人却是在湿润的环境中保存二千多年,而且关节可以活动人们最关注有两个问题,第一:怎么鉴定尸体的年份?第二:是什么环境使尸体未腐?其中第一个问题与数学有关 图 4—1(如图 4—1在长沙马王堆“沉睡”近2200年的古长沙国丞相夫人辛追,日前奇迹般地“复活”了)那么,考古学家是怎么计算出古长沙国丞相夫人辛追“沉睡”近2200年?上面已经知道考古学家是通过提取尸体的残留物碳14的残留量p,利用估算尸体出土的年代,不难发现:对每一个碳14的含量的取值,通过这个对应关系,生物死亡年数t都有唯一的值与之对应,从而t是P的函数;如图4—2材料2(幻灯):某种细胞分裂时,由1个分裂成2个,2个分裂成4个 ……,如果要求这种细胞经过多少次分裂,大约可以得到细胞1万个,10万个 ……,不难发现:分裂次数y就是要得到的细胞个数x的函数,即;图 4—21.引导学生观察这些函数的特征:含有对数符号,底数是常数,真数是变量,从而得出对数函数的定义:函数,且叫做对数函数,其中是自变量,函数的定义域是(0,+∞). 注意: 对数函数的定义与指数函数类似,都是形式定义,注意辨别.如: , 都不是对数函数. 对数函数对底数的限制:,且.3.根据对数函数定义填空;例1 (1)函数 y=logax2的定义域是___________ (其中a>0,a≠1) (2) 函数y=loga(4-x) 的定义域是___________ (其中a>0,a≠1) 说明:本例主要考察对数函数定义中底数和定义域的限制,加深对概念的理解,所以把教材中的解答题改为填空题,节省时间,点到为止,以避免挖深、拓展、引入复合函数的概念。
[设计意图:新课标强调“考虑到多数高中生的认知特点,为了有助于他们对函数概念本质的理解,不妨从学生自己的生活经历和实际问题入手”因此,新课引入不是按旧教材从反函数出发,而是选择从两个材料引出对数函数的概念,让学生熟悉它的知识背景,初步感受对数函数是刻画现实世界的又一重要数学模型这样处理,对数函数显得不抽象,学生容易接受,降低了新课教学的起点](二)尝试画图、形成感知 1.确定探究问题教师:当我们知道对数函数的定义之后,紧接着需要探讨什么问题?学生1:对数函数的图象和性质教师:你能类比前面研究指数函数的思路,提出研究对数函数图象和性质的方法吗?学生2:先画图象,再根据图象得出性质教师:画对数函数的图象是否象指数函数那样也需要分类?学生3:按和分类讨论教师:观察图象主要看哪几个特征?学生4:从图象的形状、位置、升降、定点等角度去识图教师:在明确了探究方向后,下面,按以下步骤共同探究对数函数的图象:步骤一:(1)用描点法在同一坐标系中画出下列对数函数的图象 (2)用描点法在同一坐标系中画出下列对数函数的图象 步骤二:观察对数函数、与、的图象特征 ,看看它们有那些异同点。
步骤三:利用计算器或计算机,选取底数,且的若干个不同的值,在同一平面直角坐标系中作出相应对数函数的图象观察图象,它们有哪些共同特征?步骤四:规纳出能体现对数函数的代表性图象 步骤五:作指数函数与对数函数图象的比较2.学生探究成果 (1)如图 4—3、4—4较为熟练地用描点法画出下列对数函数 、、 、的图象图4—3图4—4(2)如图4—5学生选取底数=1/4、1/5、1/6、1/10、4、5、6、10,并推荐几位代表上台演示‘几何画板’,得到相应对数函数的图象由于学生自己动手,加上‘几何画板’的强大作图功能,学生非常清楚地看到了底数是如何影响函数,且图象的变化图4—5(3)有了这种画图感知的过程以及学习指数函数的经验,学生很明确y = loga x (a>1)、y = loga x (01) y = loga x (01时,图象沿x轴正向逐步上升;当01),当a值增大,图象的上升“程度”怎样?说明:这是学生探究中容易忽略的地方,通过补充学生对对数函数图象感性认识就比较全面。
[设计意图:旧教材是通过对称变换直接从指数函数的图象得到对数函数图象,这样处理学生虽然会接受了这个事实,但对图象的感觉是肤浅的;这样处理也存在着函数教学忽视图象、性质的认知过程而注重应用的“功利”思想因此,本节课的设计注重引导学生用特殊到一般的方法探究对数函数图象的形成过程,加深感性认识同时,帮助学生确定探究问题、探究方向和探究步骤,确保探究的有效性这个环节,还要借助计算机辅助教学作用,增强学生的直观感受](三)理性认识、发现性质1.确定探究问题 教师:当我们对对数函数的图象有了直观认识后,就可以进一步研究对数函数的性质,提高我们对对数函数的理性认识同学们,通常研究函数的性质有哪些途径?学生:主要研究函数的定义域、值域、单调性、对称性、过定点等性质教师:现在,请同学们依照研究函数性质的途径,再次联手合作,根据图象特征探究出对数函数的定义域、值域、单调性、对称性、过定点等性质2.学生探究成果 在学生自主探究、合作交流的的基础上填写如下表格:函 数y = loga x (a>1)y = loga x (01时,y>000 x>1时,y<0[设计意图:发现性质、弄清性质的来龙去脉,是为了更好揭示对数函数的本质属性,传统教学往往让学生在解题中领悟。
为了扭转这种方式,我先引导学生回顾指数函数的性质,再利用类比的思想,小组合作的形式通过图象主动探索出对数函数的性质教学实践表明:当学生对对数函数的图象已有感性认识后,得到这些性质必然水到渠成](四)探究问题、变式训练 问题一:(幻灯)(教材p79 例8) 比较下列各组数中两个值的大小:(1) log 23.4 , log 28.5 (2)log 0.31.8 , log 0.32.7(3)log a5.1 , log a5.9 ( a>0 , 且a≠1 ) 独立思考:1构造怎样的对数函数模型?2运用怎样的函数性质?小组交流:(1)是增函数 (2) 是减函数 (3)y = loga x,分 和分类讨论变式训练:1. 比较下列各题中两个值的大小:⑴ log106 log108 ⑵ log0.56 log0.54 ⑶ log0.10.5 log0.10.6 ⑷ log1.50.6 log1.50.42.已知下列不等式,比较正数m,n 的大小: (1) log 3 m < log 3 n (2) log 0.3 m > log 0.3 n (3) log a m < loga n (0 log a n (a>1)问题二:(幻灯)(教材p79 例9)溶液酸碱度的测量。
溶液酸碱度是通过pH刻画的pH的计算公式为pH= —lg[ ],其中 [ ]表示溶液中氢离子的浓度,单位是摩尔/升1)根据对数函数性质及上述pH的计算公式,说明溶液酸碱度与溶液中氢离子的浓度之间的变化关系;(2)已知纯静水中氢离子的浓度为[ ] = - 摩尔/升,计算纯静水的pH独立思考:解决这个问题是选择怎样的对数函数模型?运用什么函数性质?小组交流:pH=-lg[ ]=lg[ ]=lg1/[ ], 随着[ ]的增大,pH 减小,即溶液中氢离子浓度越大,溶液的酸碱度就越大[设计意图:1这个环节不做为本节课的重头戏,设置探究问题只是从另一层面上提升。