文档详情

《何时获得最大利润》

沈***
实名认证
店铺
DOC
54KB
约5页
文档ID:138835277
《何时获得最大利润》_第1页
1/5

第二章 二次函数6.何时获得最大利润一、学生知识状况分析学生的知识技能基础:由简单的二次函数y=x2开始,然后是y=ax2,y=ax2+c,最后是y=a(x-h)2,y=a(x-h)2+k,y=ax2+bx+c,学生已经掌握了二次函数的三种表示方式和性质学生的活动经验基础:在前面对二次函数的研究中,学生研究了二次函数的图象和性质,掌握了研究二次函数常用的方法二、教学任务分析 “何时获得最大利润”似乎是商家才应该考虑的问题,但是这个问题的数学模型正是我们研究的二次函数的范畴二次函数化为顶点式后,很容易求出最大或最小值而何时获得最大利润就是当自变量取何值时,函数值取最大值的问题因此本节课中关键的问题就是如何使学生把实际问题转化为数学问题,从而把数学知识运用于实践即是否能把实际问题表示为二次函数,是否能利用二次函数的知识解决实际问题,并对结果进行解释具体地,本节课的教学目标是:(一)知识与技能 1、经历探索T恤衫销售中最大利润等问题的过程,体会二次函数是一类最优化问题的数学模型,并感受数学的应用价值 2、能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大(小)值,发展解决问题的能力。

(二)过程与方法 经历销售中最大利润问题的探究过程,让学生认识数学与人类生活的密切联系及对人类历史发展的作用,发展学生运用数学知识解决实际问题的能力 (三)情感态度与价值观 1、体会数学与人类社会的密切联系,了解数学的价值增进对数学的理解和学好数学的信心2、认识到数学是解决实际问题和进行交流的重要工具,了解数学对促进社会进步和发展人类理性精神的作用教学重点:能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最值教学难点:能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最值三、教学过程分析本节课设计了六个教学环节:复习回顾、创设问题情境讲授新课、巩固练习、实践应用、课堂小结、课后作业第一环节 复习回顾活动内容:1.复习二次函数y=ax2+bx+c的相关性质:顶点坐标、对称轴、最值等2.复习这节课所要用的其他相关知识:利润=售价-进价,总利润=每件利润×销售额活动目的:为后面新课作准备第二环节 创设问题情境,引入新课活动内容:(有关利润的问题)某商店经营T恤衫,已知成批购进时单价是2.5元。

根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售出200件请你帮助分析,销售单价是多少时,可以获利最多?设销售单价为x(x≤13.5)元,那么(1)销售量可以表示为 ;(2)销售额可以表示为 ;(3)所获利润可以表示为 ;(4)当销售单价是 元时,可以获得最大利润,最大利润是 . 这是一个有实际意义的问题,要想解决它,就必须寻找出问题本身所隐含的一些关系,并把这些关系用数学的语言表示出来设销售单价为x元,则与原先的单价相比,降低了(13.5-x)元,而每降低1元,可多售出200件,降低了(13.5-x)元,则可多售出200(13.5-x)件,因此共售出500+200(13.5-x)件,若所获利润用y(元)表示,则y=(x-2.5)[500+200(13.5-x)] 经过分析之后,上面的4个问题就可以解决了 (1)销售量可以表示为500+200(13.5-x)=3200—200x (2)销售额可以表示为x(3200-200x)=3200x-200x2。

(3)所获利润可以表示为(3200x-200x2)-2.5(3200-200x)=-200x2+3700x-8000 (4)设总利润为y元,则y=-200x2+3700x-8000=-200(x-. ∵-200<0∴抛物线有最高点,函数有最大值当x==9.25元时,y最大= =9112.5元. 即当销售单价是9.25元时,可以获得最大利润,最大利润是9112.5元.活动目的:通过这个实际问题,让学生感受到二次函数是一类最优化问题的数学模型,并感受数学的应用价值在这里帮助学生分析和表示实际问题中变量之间的关系,帮助学生领会有效的思考和解决问题的方法,学会思考、学会分析,是教学的一个重要内容第三环节 巩固练习活动内容:解决本章伊始,提出的“橙子树问题”(1.验证猜测;2.进一步分析)1.本章一开始的“种多少棵橙子树”的问题,我们得到了表示增种橙子树的数量x(棵)与橙子总产量y(个)的函数关系是:二次函数表达式y=(600-5x)(100+x)=-5x2+100x+60000当时曾经利用列表的方法得到一个猜测,现在可以验证当初的猜测是否正确?你是怎么做的?与同伴进行交流。

实际教学效果:大多数学生可以利用二次函数的顶点式解决问题y=-5x2+100x+60000=-5(x2-20x+100-100)+60000=-5(x-10)2+60500 当x=10时,y最大=605002.议一议:(要求学生画出二次函数的图象,并根据图象回答问题) (1)利用函数图象描述橙子的总产量与增种橙子树的棵数之间的关系2)增种多少棵橙子树,可以使橙子的总产量在60400个以上?实际教学效果: 学生可以顺利解决这个问题,答案如下(1)当x<10时,橙子的总产量随增种橙子树的增加而增加;当x>10时,橙子的总产量随增种橙子树的增加而减小 (2)由图可知,增种6棵、7棵、8棵、9棵、10棵、11棵、12棵、13棵或14棵,都可以使橙子总产量在60400个以上第四环节 实践应用活动内容:某商店购进一批单价为20元的日用品,如果以单价30元销售,那么半个月内可以售出400件根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件如何提高售价,才能在半个月内获得最大利润?解:设销售单价为;元,销售利润为y元,则 y=(x-20)[400-20(x-30)] =-20x2+1400x-20000 =-20(x-35)2+4500。

所以当x=35元,即销售单价提高5元时,可在半月内获得最大利润4500元.第五环节 课堂小结 本节课经历了探索T恤衫销售中最大利润等问题的过程,体会了二次函数是一类最优化问题的数学模型,并感受了数学的应用价值 学会了分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题中的最大(小)值,提高解决问题的能力第六环节 课后作业习题2.7第1,2题四、教学反思5。

下载提示
相关文档
正为您匹配相似的精品文档