文档详情

七年级数学(下册)辅导资料

靓***
实名认证
店铺
DOC
521.50KB
约22页
文档ID:28136566
七年级数学(下册)辅导资料_第1页
1/22

七年级数学(下册)资料第五章 相交线与平行线5.1.1 相交线 一、自主探究 1、填一填两直线相交所形成的角分类位置关系数量关系 2、想一想:绕点O旋转直线AB,所形成的四个角的大小变了吗?每两个角之间的关系变了吗?二、概括归纳 1、邻补角 概念: ,这样 的两个角叫互为邻补角; 请指出上图中的邻补角: ‚性质: 2、.对顶角 概念: ,这样的两个角叫互为对顶角;三、课堂检测:1、如图,直线AB、CD、EF相交于点O,∠BOE的对顶角是_______,∠COF 的邻补角是________.若∠AOC:∠AOE=2:3,∠EOD=130,则∠BOC=_________.2、如图,直线AB、CD相交于点O. (1)若∠AOC+∠BOD=100,求各角的度数. (2)若∠BOC比∠AOC的2倍多33,求各角的度数5.1.2 垂线(一) 1、如图,若∠1=60,那么∠2= 、∠3= 、∠4= . 2、改变上图中∠1的大小,若∠1=90,请画出这种图形,并求出此时∠2=、∠3=、∠4的大小。

上面所画图形中两条直线的关系是__________,知道两条直线互相________是两条直线相交的特殊情况2、用语言概括垂直定义两条直线相交,所成四个角中有一个角是_____时,我们称这两条直线__________其中一条直线是另一条的_____,他们的交点叫做_____3、垂直的表示方法:垂直用符号“⊥”来表示,若“直线AB垂直于直线CD, 垂足为O”,则记为__________________4、垂直的推理应用:(1)∵∠AOD=90( )∴AB⊥CD ( )(2)∵ AB⊥CD ( )∴ ∠AOD=90 ( )画图实践: 1.用三角尺或量角器画已知直线L的垂线.(1) 已知直线L,画出直线L的垂线,能画几条? L 小组内交流,明确直线L的垂线有_________条,即存在,但位置有不______性2) 怎样才能确定直线L的垂线位置呢?在直线L上取一点A,过点A画L的垂线, 能画几条?再经过直线L外一点B画直线L的垂线,这样的垂线能画出几条? B . . L L A 从中你能得出什么结论? ____________________________________________ .二、检测:1、如图,直线AB、EF相交于O点,于O点,,的度数分别为 . 2、(1)画图:①直线AB、CD相交于点O ②过O点作OE⊥CD于O,并使OE、OB在CD的同侧。

(2)若有∠BOE=∠BOC,求∠AOC的度数 3、.已知钝角∠AOB,点D在射线OB上. (1)画直线DE⊥OB (2)画直线DF⊥OA,垂足为F.5.1.3 垂线(二)1、 情景问题: 如图,要把河流L中的水引到农田P处,如何挖渠能使渠道最短?2、 自主探究: 如图,连接点P与直线L上的各点,,,,…,其中PO⊥L(PO叫点P到直线L的垂线段),比较线段… 的长短,这些线段中, 最短3、 概括归纳:1、公理: 连接直线外一点与直线上各点的所有线段中, 最短 简单说成: 2.、点到直线的距离: 直线外一点到 的长度,叫做这点到直线的距离 四、课堂检测:1、已知,如图,∠AOD为钝角,OC⊥OA,OB⊥OD求证:∠AOB=∠COD证明:∵OC⊥OA,OB⊥OD( ) ∴∠AOB+∠1= ,∠COD+∠1=90(垂直的定义) ∴∠AOB=∠COD( )2、如图,AC⊥BC,C为垂足,CD⊥AB,D为垂足,BC=8,CD=4.8,BD=6.4,AD=3.6,AC= 6,那么点C到AB的距离是_______,点A到BC的距离是________,点B到CD 的距离是_____,A、B两点的距离是_________.3.如图,分别画出点A、B、C到BC、AC、AB的垂线段,再量出A到BC、点B到AC、 点C到AB的距离.5.1.2 同位角、内错角和同旁内角一、探索新知 :1、我们知道,两条直线相交形成 个角,每两个角之间是 或 关系。

2、如图,两条直线a,b都与第三条直线c相交(也可说两条直线a,b被第三条直线c所截)形成 个角 其中有公共顶点的两个角是邻补角或 ‚ 没有公共顶点的两个角是什么关系?二、概括归纳: 1、.同位角: 像∠1和∠5这样,分别位于直线a,b的 ,并且都在直线c的 ,具有这样关系的一对角叫同位角 (图中还有同位角是 ) 2、 内错角: 像∠3和∠5这样,分别位于直线a,b ,并且分别在直线c的 ,具有这样关系的一对角叫内错角 (图中还有内错角是 ) 3、同旁内角: 像∠4和∠5这样,分别位于直线a,b的 ,并且都在直线c的 ,具有这样关系的一对角叫同旁内角。

(图中还有同旁内角是 )三、课堂检测:1、如图,用数字标出的八个角中①同位角有________________;②内错角有________________;③同旁内角有_______________;2、判断正误:如图,①∠1和∠B是同位角;②∠2和∠B是同位角;③∠2和∠C是内错角;④∠EAD和∠C是内错角;5.2.1 平行线一、平行线的定义、表示方法及其画法想一想:同一平面内,两条直线的位置关系除相交外,还可能是 .. 1、平行线的定义: 在 内, 的两条直线叫做平行线 2、平行线的表示方法: 若直线a与直线b平行,记作 ,读作 3、.平行线的画法: ①试一试借助方格纸画一组平行线 ②再试一试借助一把直尺和一个三角板来画平行线,并说说你的画法二、平行公理及其推论 1、如图:已知直线L,点A、点B都在直线L外  在平面内画已知直线L的平行线,这样的平行线能画出 条; ‚ 经过直线L外的一点A画已知直线的平行线,这样的平行线能画出 条; ƒ 经过直线L外的另一点B画已知直线的平行线,它与过点A的那条平行线也平行吗? 2、平行公理: 经过直线外一点有 条直线与这条直线平行 推论: 如果两条直线都与第三条直线平行,那么这两条直线 即,如果a∥b,c∥b,那么 三、课堂检测:1、因为AB∥CD,EF∥AB,根据_________,所以_____________。

2、a、b、c是直线,且a∥b, b∥c, 则a___c;a、b、c是直线,且a⊥b, b⊥c, 则a___c;3、指出图中①∠C和∠D的关系:②∠B和∠GEF的关系;③∠A和∠D的关系;④∠AGE和∠BGE的关系;⑤∠CFD和∠AFB的关系平行线的判定(一)一、概括归纳: 平行线的判定方法1:两直线被第三条直线所截,如果所得到的同位角 ,那么这两直线平行简记为: 2:两直线被第三条直线所截,如果所得到的 ,那么这两直线平行简记为: 3:两直线被第三条直线所截,如果所得到的 ,那么这两直线平行简记为: 二、巩固应用: 如图,在同一平面内,如果两条直线a,b都垂直于直线c,那么这两条直线a,b平行吗?为什么?三、课堂检测:1、如图,直线a、b被直线l所截,已知∠1=115,∠2=115,直线a、b平行吗?为什么? 2、如图,在四边形ABCD中,已知∠B=60,∠C=120,AB与CD平行吗?AD与BC平行吗?3、如图,若∠1=52,问应使∠C为多少度才能使直线AB∥直线CD?平行线的判定(二) 问题1 如图,AB⊥BC,BC⊥CD,BF和CE是射线,并且∠1=∠2,试说明BF∥CE 证明:∵ AB⊥BC,BC⊥CD ( ) ∴ ∠ABC=∠DCB= ( ) ∴ ∠1+∠3= ,∠2+∠4= ( ) 又∵∠1=∠2(已知) ∴ (同角的余角相等) ∴BF∥CE ( ) 问题2 如图,已知∠OEB=130,∠FOD=25,OF平分∠EOD,试说明AB∥CD 二、课堂检测:1、由∠DCE=∠D,可判断哪两条直线平行?由∠1=∠2,可判断哪两直线平行?由∠D+∠BAD=180,可判断哪两条直线平行? 2、如图,已知:∠C=∠D,∠D=∠1,说明:AC∥DF,DB∥EC。

5.3.1 平行线的性质(一)一、学习过程:性质1:两条平行线被第三条直线所截,得到的同位角相等,那么内错角,同旁内角又有何关系呢?321cab①如图,若a∥b,那么∠1=∠2吗?答: 理由是:∵a∥b(已知) ∴∠1 = ( ) 又∵∠3 = ( ) ∴ = ( )性质2:两条平行线被第三条直线所截,内错角相等 简记为:两直线平行,内错角相等②如图,若a∥b,那么∠2和∠3有何关系?答: 理由是:∵a∥b(已知)∴∠1= (两直线平行, )又∵ + =180( )∴ ( )性质3:两条平行线被第三条直线所截,同旁内角相等 简记为:两直线平行,同旁内角相等二、巩固应用:例1已知:如图所示,AD∥BC,∠AEF=∠B,求证:AD∥EF.分析:(执果索因)从图直观分析,欲证AD∥EF,只需∠A+∠AEF=180,(由因求果)因为AD∥BC,所以∠A+∠B=180,又∠B=∠AEF,所以∠A+∠AEF=180成立.于是得证.证明:因为 AD∥BC,(已知)∴ .(两直线平行,同旁内角互补)∵ ∠AEF=∠B,(已知)∴ ∠A+∠AEF=180,( )∴ .( ,两条直线平行)三、课堂检测1、平行四边形中有一内角为60,则其余各个内角的大小为 , , 。

则∠APC= ,∠PDO= 2、如图,如果AB∥DF,DE∥BC,且∠1=65,那么你能说出∠2、∠3、∠4的度数吗?为什么?平行线的性质(二)一:1.平行线的判定方法有: ① , ② , 两直线平行 ③ , 2.平行线的性质有: ① 两直线平行 ② ③ 3. 平行线的判定方法与性质有什么区别和联系?二、探索新知 :ABCDEF一、平行线的性质与判定方法在实际问题中的应用例1. 如图所示,一条公路两次转弯后,和原来的方向相同,如果第一次拐的角是36(即∠BCE),那么第二次拐的角(即∠DEF)是多少度? 分析:此题中的关键句“和原来的方向相同”是指AB∥EF,已知两直线平行,由平行线的性质,得到内错角相等(∠BCE=∠DEF)即可解决问题。

解:由题意可知,AB∥CD, ∴ = (两直线平行, ) ∴∠DEF= 三、课堂检测1、已知:如图,AB∥CD,∠B=35,∠1=75,求∠A的度数.解题思路分析:欲求∠A,只要求∠ACD的大小.解:∵CD∥AB,∠B=35, ( ) ∴∠2=∠______=______(_________,_________)而∠1=75,∴∠ACD=∠1+∠2=______∵CD∥AB,( )∴∠A+______=180.(_________,_________)∴∠A=______=______.2、已知:如图,四边形ABCD中,AB∥CD,AD∥BC,∠B=50.求∠D的度数.命题、定理一、1、下列句子哪些能对一件事情作出判断,哪些不能? ①两直线平行,内错角相等 ②对顶角相等 ③过直线L外的一点作直线L 的平行线 ④同旁内角互补 ⑤两条直线相交有几个交点? 答: 能判断, 不能 2、我们把能判断一件事情的句子叫做 。

练习1、指出下列命题的题设和结论 ①如果a>b,b>c那么a>c; ②同位角相等,两直线平行 ③同角的补角相等 ④若a=b,则a-c=b-c ⑤两直线平行,内错角相等 ⑥对顶角相等 ⑦相等的角是对顶角 ⑧同旁内角互补3、命题的真假①如果题设成立时,结论也一定成立,这样正确的命题叫做真命题,经过推理证实的真命题叫做定理②如果题设成立,但是结论不一定成立,这样错误的命题叫做假命题练习2、上面①—⑧题中命题是真命题吗?如果是,说出理由;如果不是,请举出反例. 解:三、课堂检测:判断下列各命题中,哪些命题是真命题?哪些是假命题?(对于真命题画“√”,对于假命题画“”)(1)0是自然数.( ). (2)如果两个角不相等,那么这两个角不是对顶角.( ).(3)相等的角是对顶角.( ). (4)如果AC=BC,那么C点是AB的中点.( ).(5)若a∥b,b∥c,则a∥c.( ). (6)如果C是线段AB的中点,那么AB=2BC.( ).(7)若x2=4,则x=2.( ). (8)若xy=0,则x=0.( ).(9)同一平面内既不重合也不平行的两条直线一定相交.( ).(10)邻补角的平分线互相垂直.( ). (11)同位角相等.( ).(12)大于直角的角是钝角.( ).平移一、归纳 ⑴ 把一个图形整体沿某一方向移动,会得到一个新图形,新图形和原图形的 和 完全相同 ⑵ 新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是 ,连接各组对应点的线段 且 。

⑶ ,叫做平移变换,简称平移 二、巩固应用: 1、平移在我们日常生活中是很常见的,利用平移也可以制作很美丽的图案,你能举出生活中一些利用平移的例子吗?2、如图1,下列A、B、C、D四幅图案中,能通过平移图案(1)得到的是( ) (1) A. B. C. D. 图13、如图2,在高为2米,水平距离为3米楼梯的表面铺地毯,地毯的长度至少需 米.解析:把每阶楼梯的高沿水平方向平移,和就是楼梯的 ;把每阶楼梯的宽沿竖直方向平移正好构成了楼梯的 ,再把楼梯的总高度和总长度相加,即得地毯的长度至少需 (米).三、课堂检测:1,如图所示,将三角形ABC平移到△A′B′C′. (图a) (图b)在这个平移中:(1)三角形ABC的整体沿______移动,得到三角形A′B′C′.三角形A′B′C′与三角形ABC的______和______完全相同.(2)连结各组对应点的线段即AA′、BB′、CC′之间的数量关系是____________;位置关系是____________.2,如图,方格中有一条美丽可爱的小金鱼.(1)若方格的边长为1,则小鱼的面积为 . (2)画出小鱼向左平移3格后的图形(不要求写作图步骤和过程).A’BA3、如图所示,经过平移,线段AB 的端点A移到了点A′,你能作出线段AB平移后的线段A′B′吗?分析:根据平移的特征,平移前后两个图形对应点 的连线平行且相等,连AA′,作BB′∥AA′且AA′=BB′,连A′B′即可。

4,如图所示,经过平移,△ABC的顶点A移到了点A′,作出平移后的三角形分析:连对应点AA′,即可确定平移的方向和距离,用上题的方法分别作点B、C的对应点B′、C′,顺次连接A′B′、B′C′、C′A′即可三、课堂检测:按要求画出相应图形.(1)已知:如图,AB∥DC,AD∥BC,DE⊥AB于E点,将三角形DAE平移,得到三角形CBF. (2)已知:如图,AB∥DC,将线段DB向右平移,得到线段CE.(3)已知:平行四边形ABCD及A′点,将平行四边形ABCD平移,使A点移到A′点,得平行四边形A′B′C′D′.(4)已知:如图,CD⊥AB于D,DE∥BC,EF⊥AB于F,求证:∠FED=∠BCD. 课题:平面直角坐标系一、填空题:1.已知点M(m,1-m)在第二象限,则m的值是 ;2.已知点P的坐标是(m,-1),且点P关于轴对称的点的坐标是(-3,2n),则m= , n= ;3.点 A在第二象限,它到轴、轴的距离分别是 、,则坐标是 ;4.点P(-1,2)关于x轴的对称点的坐标是 ,关于y轴的对称点的坐标是 ,关于原点的对称点的坐标是 ;5.若点(1-m,2+m)在第一象限,则m的取值范围是 ;6.已知mn=0,则点(m,n)在 第 象限;7.点A(-3,4)关于轴对称的点的坐标是 二.解答题:8.对于边长为6的正△ABC,建立适当的直角坐标系,并写出各个顶点的坐标.             9.如图,已知A、B两村庄的坐标分别为(2,2)、(7,4),一辆汽车在轴上行驶,从原点O出发。

       (1)汽车行驶到什么位置时离A村最近?写出此点的坐标2)汽车行驶到什么位置时离B村最近?写出此点的坐标3)请在图中画出汽车行驶到什么位置时,距离两村的和最短?10.已知三点A(0,4),B(—3,0),C(3,0),现以A、B、C为顶点画平行四边形,请根据A、B、C三点的坐标,写出第四个顶点D的坐标          课题:三角形1.如果三角形的一个外角小于和它相邻的内角,那么这个三角形是( )A.锐角三角形 B.直角三角形 C.钝角三角形 D.锐角三角形或钝角三角形2.下列正多边形不能镶嵌成一个平面图案的是( ) A.正三角形 B.正方形 C.正五边形 D.正六边形3.在△ABC中,若a=3,b=5,则c边的取值范围_ _______.4.如果三条线段的比是:(1)5:20:30 (2)5:10:15 (3)3:4:5(4)3:3:5 (5)5:5:10 (6)7:7:2那么其中可构成三角形的比有( )种.A.2 B.3 C.4 D.55.三角形的三边分别为3,8,1-2x,则x的取值范围是( ) A.0<x<2 B.-5<x<-2 C.-2<x<5 D.x<-5或x>26.如果一个三角形两边上的高的交点在三角形的外部,那么这个三角形是___ ___三角形.ABC图1ABC图27. 已知△ABC,求作:(1)△ABC的中线AD;(2)△ABC的角平分线AE;8. 已知△ABC,求作:△ABC的高线AD、CE。

9.在△ABC中,两条角平分线BD、CE相交于点O,∠BOC=116,那么∠A的度数是______10.已知BD、CE是△ABC的高,若直线BD、CE相交所成的角中有一个为50,则∠BAC等于______________.11.如图所示:AB//CD,∠A=450,∠C=290,则∠E=_____ 11题图   12题图12.如图,将一个长方形纸片按如图方法折叠,BC、BD为折痕,则∠CBD=____度.13.一个多边形的每个内角都等于1500,则这个多边形是_____边形.14.P为中BC边的延长线上一点,且∠A=400,∠B=700,则∠ACP=_____15.如果一个三角形的两边长分别是2cm和7cm,且第三边为奇数,则三角形的周长是___cm.16.如果将长度为 a—2,a+5和a+2的三条线段首尾顺次相接要以得到的一个三角形,那么a的取值范围是_____.17.在活动课上,小红有两根长为4cm、8cm的小木棒,现打算拼一个等腰三角形,则小红应取的第三根小木棒的长度是____cm.18.如图:小明从A点出发前进10m,向右转150,,再前进10m,右转150……这样一直走下去,他第一次回到出发点A时,一共走了____m.19.动手折一折:将一张正方形纸片按下图、、所示对折3次得到,在AC边上取一点D,使AD=AB,沿虚线BD剪开,展开所在部分得到一个多边形,则这个多边形的一个内角的度数是____ ① ② ③ ④第19题图 第20题图20.如图,∠A=600,∠B=800,则.∠2+∠1=_____.21.如图,一块模板中AB、CD的延长线应相交成800角,因交点不在模板上,不便测量,测得∠BAE=1240,∠DCE=1550,AE⊥EF,CF⊥EF,此时,AB、CD的延长线相交成的角是否符合规定? 22.如图,有一个多边形的木框,如果据去一个角(不过顶点)后,形成的多边形的内角和是25200,那么原来的多边形木框是几边形? 22题图23.如图,在△ABC中:(1)画出BC边上的高AD和中线AE (2)若∠B=300,∠ACB=1300, 求∠BAD和∠CAD的度数。

24.已知:三角形的两个外角分别是a0,b0,且满足(5a-50)2=-|a+b-200|.  求此三角形各角的度数25.如图,AB//CD,AE交CD于点C,DE⊥AE,垂足为E,∠A=370,求∠D的度数. 26.如图,∠ECF=900,线段AB的端点分别在CE和CF上,BD平分∠CBA,并与∠CBA的外角平分线AG所在的直线交于一点D,1)∠D与∠C有怎样的数量关系?(直接写出关系及大小)2)点A在射线CE上运动,(不与点C重合)时,其它条件不变,(1)中结论还成立吗?说说你的理由 课题 二元一次方程组(一)本章知识结构图:二元一次方程组消元思想代入(消元)法进一步探究利用二元一次方程组分析解决实际问 题 实际问题加减(消元)法(二)例题与习题:1、下列方程中是二元一次方程的有( )个① ② ③ ④ ⑤ A.2 B.3 C.4 D.52、若方程为二元一次方程,则k的值为( )A. 2 B. -2 C. 2或-2 D.以上均不对。

3、如果是二元一次方程3x-2y=11的一个解,那么当时,y=_________4、方程 2x+y=5的非负整数解为_________________.5、在方程2(x+y)-3(y-x)=3中用含x的代数式表示y,则是( )A.y=5x-3 B.y=-x-3 C.y=-5x-3 D.y=-5x+36、已知是一个二元一次方程组的解,试写出一个符合条件的二元一次方程组_______________ __7、 用代入消元法解方程组: 8 、 用加减消元法解方程组: 9.若方程组的解满足,则m=________.10、解方程组:11、若方程组的解x与y相等,则k=_________13、 在等式,当 x=1时,y=1;x=2时,y=4,则k、b的值为( )A B C D14、已知是同类项,那么a,b的值是( )A. B. C. D.15、若的值为( )A.8 B.2 C.-2 D.-4方程组综合应用:1.已知是关于x,y的二元一次方程组的解,试求(m+n)2004的值. 2.已知方程组与同解,求的值.3.如图,8块相同的长方形地砖拼成一个长方形,每块长方形地砖的长和宽分别是 4.王师傅下岗后开了一家小商店,上周他购进甲乙两种商品共50件,甲种商品的进价是每件35元,利润率是20%, 乙种商品的进价是每件20元,利润率是15%,共获利278元,你知道王师傅分别购进甲乙两种商品各多少件吗?课题 不等式与不等式组 例题与习题:二、不等式与不等式组的解法与解集1、解不等式3x+6>1 5-x<3 2x-7<8 -0.5x-7>9 2、已知关于x的不等式ax≥2的解集在数轴上的表示如图所示,则a的取值为_________0-13、试讨论关于x的不等式ax>x+2的解的情况。

4、解不等式组: 5,某次数学测验,共16个选择题,评分标准为:;对一题给6分,错一题倒扣2分,不答不给分某个学生有1题未答,他想自己的分数不低于70分,他至少要对多少题?6.某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A、B两种产品50件.生产一件A产品需要甲种原料9千克,乙种原料3千克,可获利润700元;生产一件B产品,需要甲种原料4千克,乙种原料10千克,可获利润1200元.(1)设生产x件A种产品,写出其题意x应满足的不等式组;(2)由题意有哪几种按要求安排A、B两种产品的生产件数的生产方案?请您帮助设计出来第十章 数据的收集、整理与描述一、选择题1.要调查下面几个问题,你认为应作为抽样调查的是( ) ①调查一个村庄所有家庭的收入; ②调查某电视剧的收视率; ③调查一批炮弹的杀伤力; ④调查一片森林树的棵数有多少?(A)①②③④; (B)②③④; (C)②③; (D)①②③、2.要了解某种产品的质量,从中抽取出300个产品进行检验,在这个问题中,300个产品的质量叫做A.总体 B.个体 C.样本 D.样本容量3.一次数学考试,考生4万名,为了解4万名考生的数学成绩,从中抽取400名考生的数学成绩进行统计分析,这个问题中总体是指( )                                  A.4万名考生 B.4万名考生的数学成绩 C.400  D.400名考生的数学成绩4.要了解某地农户的用电情况, 调查了部分农户在某一个月中用电情况: 用电15度的有3户,用电20度的有5户,用电30度的有7户,那么该月平均每户用电约( ) (A)23.7度 (B)21.6度 (C)20度 (D)22.6度5.为了了解七年级的学生的体能情况, 抽取了某校该年级的部分学生进行一分钟跳绳次数测试,将所得数据整理后,画成统计图(如图), 从左到右前三个小组所占的百分比分别为10%,30%,40%,第一小组若有5人,则第四小组的人数是( ) (A)8 (B)9 (C)10 (D)11二、填空题1.某出租车公司在“五一”黄金周期间,平均每天的营业额为5万元,由此推断5月份该公司的总营业额为531=155(万元),你认为是否合理?答:________.2.为了考查一批光盘的质量,从中抽取500张进行检测,在这个问题中总体是 ;个体是 ;样本是 。

3.某出租车公司在“五一”长假期间平均每天的营业额为5万元,由此推断5月份的总营业额约531=155(万元).根据所学的统计知识,你认为这样的推断是否合理?___________________________________________4.某校初三年级在期中考试后,从全年级200名学生中抽取20名学生的考试成绩作为一个样本,用来分析全年级的考试情况,这个问题中的样本是________5.从鱼池中不同地方抽出30条鱼作上记号放回鱼池,一段时间后,再捞出50条鱼其中有两条有记号,估记鱼池鱼的数目约为 6.小明家搬进新居后添置了新的电冰箱、电热水器等家用电器,为了了解电情况,他在六月份连续几天观察电表的度数,电表显示的度数如下表:日期1日2日3日4日5日6日7日8日电表显示度数(度)115118122127133136140148 估计这个家庭6月份的总用电量为______度.39.1%18.3%1982年2002年1990年1964年26%20.6%26.3%1953年7.城镇人口占总人口比例的大小表示城镇化水平的高低,由下面统计图可知, 我国城镇化水平提高最快的时期是_________.三、解答题1.已知全班有40名学生,他们有的步行,有的骑车,还有的乘车来上学,根据以下已知信息完成统计表,并用扇形统计图表示它们所占的比例?上学方式步行骑车乘车划记正正正次数9占百分比40%2.如N图是牌电脑的布告,看图思考:(注:纵坐标为销售额增长率) (1)N牌电脑的销售额是否真的比M牌多?要作出判断还需要什么资料?(2)图中两条折线所能真正说明的是N牌在什么方面领先? Xk b1.co m3.如图,为某地区小学、初中、高中学生视力情况调查统计图,根据图中的信息回答下列问题。

1)该地区中小学生视力不良率随着年级的升高而 ;初中生视力不良率约在 左右2)高中生视力不良率约是小学生的 倍 第 22 页 陈海波整理。

下载提示
相关文档
正为您匹配相似的精品文档