分离正庚烷-正己烷混合液的筛板式精馏塔工艺设计一、课题名称分离正庚烷-正己烷混合液的筛板式精馏塔工艺设计二、课题条件原 料:正己烷、正庚烷溶液 处理量:30000t/a原料组成:正己烷44%(质量百分数)原料液初温: 40℃操作压力、回流比、单板压降:自选进料状态:冷液体进料分离要求:塔顶苯含量不低于99%,残液中苯含量不大于0.2%塔 顶:全凝器塔 釜:饱和蒸汽间接加热塔板形式:筛板生产时间:年开工300天,每天三班8小时连续生产冷却水温度:20℃设备形式:筛板塔厂 址:滨州市三、设计内容1、设计方案的选定2、精馏塔的物料衡算3、塔板数的确定4、精馏塔的工艺条件及有关物性数据的计算(加热物料进出口温度、密度、粘度、比热、导热系数)5、精馏塔塔体工艺尺寸的计算6、塔板主要工艺尺寸的计算7、塔板的流体力学验算8、塔板负荷性能图(精馏段)9、换热器设计10、精馏塔接管尺寸计算1、撰写课程设计说明书一份 设计说明书的基本内容(1)课程设计任务书(2)目录(3)设计计算与说明(4)设计结果汇总(5)小结(6)参考文献14、 有关物性数据可查相关手册15、 注意事项(1)写出详细计算步骤,并注明选用数据的来源(2)每项设计结束后列出计算结果明细表(3)设计最终需装订成册上交四、进度计划1.设计动员,下达设计任务书 0.5天2.收集资料,阅读教材,拟定设计进度 1-2天3.初步确定设计方案及设计计算内容 5-6天4.整理设计资料,撰写设计说明书 前言 1第一章综述 21.1精馏原理及其在生产中的应用 21.2精馏操作对塔设备的要求 21.3板式塔类型 3第二章工艺条件的使用和说明 32.1操作压力的确定 32.2进料状态的确定 42.3加热剂和加热方式的确定 42.4冷凝器和冷却剂的确定 4第三章 塔的工艺设计计算 53.1精馏塔的物料衡算 53.1.1原料液及塔顶、塔底产品的摩尔分数 53.1.2原料液及塔顶、塔底产品含正己烷摩尔分数和平均摩尔质量 53.1.3物料衡算 63.2理论板数的计算 73.2.1正己烷正庚烷的平衡线 73.2.2 求q值及q线方程 93.2.3 全塔效率ET 123.2.4 实际板层数求解 123.3精馏塔正己烷-正庚烷物性参数的计算 133.3.1 操作温度 133.3.2 平均摩尔质量 133.3.3液相平均表面张力计算 143.3.4液相平均黏度计算 143.3.6 液相平均密度计算 15第四章精馏塔的塔体工艺尺寸设计 164.1 塔径的计算 164.1.1精馏段 164.1.2提馏段 18提馏段 194.2 精馏塔有效高度的计算 204.3塔板主要工艺尺寸的计算 204.3.1 溢流装置计算 204.3.1.1 堰长 204.3.1.2溢流堰高度 214.3.1.3弓形降液管宽度和截面积 224.3.1.4 降液管底隙高度 224.4 塔板布置 234.4.1塔板的分块 234.4.2边缘区宽度确定 234.4.3 开孔区面积计算 234.3.4 筛孔计算及其排列 244.5 筛板的流体力学验算 254.5.1 塔板压降 254.5.1.1 干板阻力计算 254.5.1.2 气体通过液层的阻力计算 254.5.1.3 液体表面张力的阻力计算 264.5.2液沫夹带 274.5.3 漏液 274.5.4 液泛 284.6 塔板负荷性能图 294.6.1精馏段 294.6.1.1 漏液线 294.6.1.2 液沫夹带线 304.6.1.3 液相负荷下限线 304.6.1.4液相负荷上限线 314.6.1.5 液泛线 314.6.2提馏段 324.6.2.1漏液线 324.6.2.2雾沫夹带线 334.6.2.3 液相负荷下限线 344.6.2.4 液相负荷上限线 344.6.2.5 液泛线 34第五章 热量衡算 365.1相关介质的选择 365.1.1加热介质的选择 365.1.2冷凝剂 375.2焓值衡算 375.3附属设备设计 395.3.1 进料管 395.3.2回流管 405.3.3塔顶蒸气出料管 415.3.4 釜液排出管 415.3.5加热蒸汽管 425.4筒体与封头 435.4.1筒体 435.4.2封头 435.4.3裙座 435.4.4人孔 445.4.5除沫器 445.5塔总体高度的设计 445.5.1塔顶空间 445.5.2塔底空间 445.5.3塔总高度的设计 455.7 再沸器的选择 465.8 泵的选择 475.5.1.进料泵 475.8.2.回流泵 48设计感想 49参考文献 49附录一(结果汇总) 49附录二 符号说明 51精馏塔的工艺性能图 52塔板设计图 52塔设计图 53塔板设计工艺图 54前言 塔设备的基本功能在于给气、液两相充分接触的机会,使传质、传热两种传递过程能够迅速而且有效地进行,并且还要能使能够接触的气、液两相及时分开,互不夹带。
所以,蒸馏、吸收、萃取、吸附等操作可在相同的设备中进行根据塔的结构型式,塔设备可分为板式塔与填料塔两大类 板式塔内装有若干层塔板,液体靠重力作用由顶部逐板流向塔底,并在各块板面上形成流动的液层;气体则靠压差的推动,由塔底向上依次穿过各塔板上的液层而流向塔顶气、液两相在塔内进行逐级接触,两相的组成沿塔高呈阶梯式变化板式塔为逐级接触式气液传质设备在一个圆筒形的壳体内装有若干层按一定间距放置的水平塔板,塔板上开有很多筛孔,每层塔板靠塔壁处设有降液管气液两相在塔板内进行逐级接触,两相的组成沿塔高呈阶梯式变化板式塔的优点重量轻、效率好、处理量大、便于维修缺点:结构复杂,压降大本设计采用板式塔中的筛板塔,主要对塔高、塔径、附属设备的设计计算与选择,进行塔的流体力学验算和负荷性能图,得到操作弹性等等本次设计结果为:理论板数为21块(不含再沸器),塔效率为57.48%,精馏段实际操作板数为16块,提馏段实际操作板数为21块,实际总板数为37块(不包括塔底再沸器)进料位置为第17块板,在板式塔的主要工艺尺寸计算中得出塔径为1.2米,设置2个人孔,塔高为18.774米,通过筛板塔的流体力学验算,证明设计各指标数据均符合要求。
第一章综述1.1精馏原理及其在生产中的应用塔设备是化工、石油等工业中最广泛使用的重要生产设备塔设备的基本功能在于给气、液两相提供以充分接触的机会,能够使质、传热两种传递过程能够迅速有效地进行;还要使接触之后的气、液两相及时分开所以,蒸馏和吸收操作可在同样的设备中进行根据塔内气液接触部件的结构型式,塔设备可分为板式塔与填料塔两大类板式塔内沿塔高装有若干层塔板,液体靠重力作用由顶部逐板流向塔底,并且在各块板上形成流动的液层;气体的推动力为压强差,由塔底向上穿过每层塔板上的液层而流向塔顶气、液两相在塔内进行逐级接触,两相的组成沿塔高呈阶梯式变化填料塔内装有各种形式的固体填充物,即填料液相由塔顶喷淋装置分布于填料层上,靠重力作用沿填料表面流下;气相则在压强差推动下穿过填料的间隙,由塔的一端流向另一端气、液在填料的润湿表面上进行接触,其组成沿塔高连续地变化目前在工业生产中,当处理量大时多采用板式塔,而当处理量较小时多采用填料塔蒸馏操作的规模往往较大,所需塔径常达一米以上,故采用板式塔较多;吸收操作的规模一般较小,故采用填料塔较多1.2精馏操作对塔设备的要求 (1)气(汽)、液两相处理量大,即生产能力大时,仍不致发生大量的雾沫夹带、液泛等破坏操作的现象。
2)操作稳定,弹性大,即当塔设备的气(汽)、液负荷具有较大范围的变动时,而且仍能够在较高的传质效率下进行稳定的操作并应保证长期连续操作所必须的可靠性3)流体流动的阻力小,这大大节省了动力消耗,并且也降低了操作费用对于减压精馏操作,过大的压力降使整个系统无法继续维持必要的真空度,导致破坏物系的操作4)结构简单,材料耗用量小,制造安装容易5)耐腐蚀而且不易堵塞,方便操作、调节和检修6)塔内的滞留量要小实际上,任何塔设备都难以满足上述所有要求,况且上述要求中有大部分也是互相矛盾不同的塔型各有某些独特的优点,设计时应该根据物系性质和具体要求,一定要抓住主要矛盾,进行选型1.3板式塔类型塔设备主要分为板式塔和填料塔两大类精馏操作既可采用板式塔,也可采用填料塔板式塔为逐级接触的气-液传质设备,其种类繁多,根据塔板上气-液接触元件的不同,可分为泡罩塔、浮阀塔、筛板塔、穿流多孔板塔、舌形塔、浮动舌形塔和浮动喷射塔等多种筛板塔也是传质过程常用的塔设备,它的主要优点有:(1)结构比浮阀塔更简单,易于加工,造价约为泡罩塔的60%,为浮阀塔的80%左右2)处理能力大,比同塔径的泡罩塔可增加10~15%3)塔板效率高,比泡罩塔高15%左右。
4)压降较低,每板压力比泡罩塔约低30%左右筛板塔的缺点是:(1)塔板安装的水平度要求较高,否则气液接触不匀 (2)操作弹性较小(约2~3)3) 小孔筛板容易堵塞第二章工艺条件的使用和说明2.1操作压力的确定蒸馏操作通常在常压、加压和减压下进行确定操作压力时,应该根据所处理的物料的性质,兼顾技术上的可行性和经济上的合理性进行考虑由于对于正己烷—正庚烷物系并没有什么特殊要求,故本设计采用的是常压进料2.2进料状态的确定进料状态与塔板数、塔径、回流量及塔的热负荷都有密切的联系本设计中采用40℃进料2.3加热剂和加热方式的确定蒸馏釜的加热方式通常采用间接蒸汽加热,设置再沸器当然有时也可采用直接蒸汽加热然而,直接蒸汽加热时,由于蒸汽的不断通入,对塔底溶液起到了稀释作用,在塔底易挥发物损失量相同的情况下,塔底残液中易挥发组分的浓度应较低,因而塔板数会稍有增加本设计采用立式热虹吸式再沸器,该再沸器是利用塔底单相釜液与换热管内气液混合物的密度差形成循环推动力,构成工艺物流在精馏塔底与再沸器间的流动循环这种再沸器具有传热系数高,结构紧凑,安装方便,釜液在加热段停留时间短,不易结垢,调节方便,占地面积小,设备及运行费用低等显著优点。
但由于结构上的原因,壳程不易清洗,因此不适宜用于高粘度的液体或较脏的加热介质同时由于是立式安装,因而,增加了塔的裙座高度2.4冷凝器和冷却剂的确定 本设计用水作为冷却剂冷凝器将塔顶蒸气冷凝成液体,部分冷凝液作塔顶产品,其余作回流液返回塔顶,使塔内气液两相间的接触传质得以进行精馏塔选用筛板塔,配合使用螺纹管式换热器因为此换热器承受的压力在0-1.6MPa,振动幅度小,噪音小,使用寿命长,热效率高,更加节省能量,全不锈钢焊接,耐高温高压,结构紧凑,安装方便,占地面积小,,结垢倾向低,维护费用低,而且节能环保第三章 塔的工艺设计计算3.1精馏塔的物料衡算3.1.1原料液及塔顶、塔底产品的摩尔分数正己烷的摩尔质量 正庚烷的摩尔质量 原料处理量为: 原料液及塔顶、塔底产品含正己烷摩尔分数和平均摩尔质量 物料衡算 总物料衡算 D+W=F 正己烷物料衡算 联立解得 正庚烷的回收率: 正己烷的回收率: 式中:F—原料液流量,D—流出液流量, W—釜残液流量, XF—原料液中易挥发组分的摩尔分数 XD—馏出液中易挥发组分的摩尔分数 XW—釜残液中易挥发组分的摩尔分数3.2理论板数的计算3.2.1正己烷正庚烷的平衡线 Antoine常数值组分ABCPS正己烷5.996941168.337223.9891正庚烷6.902401268.115216.900 常压下正己烷-正庚烷气液平衡组成与温度的关系 气液平衡数据:PA/PB/液相中正己烷的摩尔分率x 气相中正庚烷的摩尔分率y温度t/℃101.17201738.638235191.0020466221.0007806368.7104.388890140.041457710.9519966850.98102544269.7107.685197941.485348280.9035466410.96049949570.7111.062266842.970754970.8566301950.93918352771.7114.521431944.498535180.8111841630.91705796572.7118.064036746.069555540.7671483090.89410292373.7121.69143347.684691870.7244651950.870298274.7125.404980849.344829120.6830800320.84562328175.7129.206048151.050861320.6429405490.8200573376.7133.096010552.803691470.6039968590.79357919477.7137.076251654.604231550.5662013420.766167478.7141.148162456.453402380.5295085270.73780015479.7145.313141258.352133580.4938749860.70845533680.7149.572593660.301363520.4592592310.67811050781.7153.927932262.302039190.4256216180.64674289882.7158.380576464.355116170.3929242540.61432941683.7162.931952466.461558560.3611309130.58084664184.7167.58349368.622338850.3302069530.54627082585.7172.336637270.838437880.3001192370.51057788886.7177.192830473.110844740.2708360630.47374342287.7182.15352475.440556690.2423270940.43574268788.7187.220175277.828579080.2145632910.39655061289.7192.394247180.275925260.1875168520.35614179290.7197.67720882.783616450.1611611520.31449048991.7203.07053285.352681720.1354706890.2715706392.7208.575698387.984157860.110421030.2273558193.7214.194190890.679089260.0859887630.18181928394.7219.927498893.438527860.0621514440.13493397495.7225.777115996.263533030.0388875580.08667246596.7235.9926376101.219540.0005970030.00139080498.4正己烷正庚烷t-x-y图如下:利用表一中数据由内差可求得当,溶液的泡点温度 3.2.2 求q值及q线方程表二:正己烷和正庚烷的汽化热(求81.17℃)温度T/K353.2363.2 正己烷r1(KJ/mol)28.3527.64 正庚烷r2(KJ/mol)33.0832.41 内插法可得 平均温度表三:正己烷和正庚烷的比热容(求60.89℃下)温度T/K330340 正庚烷Cp2(J/(mol/K))237.4241.7内插法:正己烷用已知:所以q线方程为所以由图可看出q线与平衡线的交点(0.5684,0.7545) 所以 取 故精馏段操作线方程提馏段: 所以作下图。
图解法求理论塔板数:利用origin作图,可知第十块板进料,总理论板层数为21块(不含再沸器),精馏段9块,提馏段12块 3.2.3 全塔效率ET塔顶与塔底平均温度正己烷: 正庚烷: tPAPB81.7149.572660.3013682.7153.929762.30204由直线内插法: 3.2.4 实际板层数求解ET=0.56精馏段:N1=9/0.5748=16提馏段:N2=12/0.5748=21实际总板数:37块3.3精馏塔正己烷-正庚烷物性参数的计算3.3.1 操作温度利用表一数据内插法可求得、精馏段平均温度提馏段平均温度3.3.2 平均摩尔质量精馏段(75.045℃)0.7244651950.870298274.70.6830800320.84562328175.7液相组成:气相组成: 提馏段(89.745℃)0.2145632910.39655061289.70.1875168520.35614179290.7液相组成:气相组成:液相平均表面张力计算液相平均表面张力依下式计算,即 表四:正己烷和正庚烷液相表面张力T/K343.2353.2363.2/()13.2012.2411.22/()15.3814.3513.42 精馏段液相平均表面张力()正己烷正庚烷 提馏段液相平均表面张力() 正己烷 正庚烷3.3.4液相平均黏度计算液相平均粘度依下式计算:表五:正己烷和正庚烷液相黏度T/K343.2353.2363.2323.2333.20.2410.2210.2610.2410.209精馏段液相平均黏度()正己烷 正庚烷 提馏段液相平均黏度() 正己烷 正庚烷 3.3.5 操作压力计算 塔顶操作压力每层塔板压降 ,一般进料板压力 塔底操作压力 精馏段平均压力 提馏段平均压力 全塔平均压力3.3.6 液相平均密度计算表六:正己烷和正庚烷液相密度t/℃6080100620600.2579.3649.4630.7611.0液相平均密度依下式计算:精馏段平均密度计算(t=70.045℃) 液相平均密度:正己烷 正庚烷 由理想气体状态方程计算气相密度: 提馏段平均密度计算()液相平均密度:正己烷正庚烷 气相密度:第四章精馏塔的塔体工艺尺寸设计4.1 塔径的计算 4.1.1精馏段精馏段的气、液相体积流率为式中 V—精馏段气相流量, L—精馏段液相流量,MVM、MLM—分别为精馏段气、液相平均摩尔质量,、—分别为精馏段气、液相平均密度,kg/m3取板间距HT=0.40mm,取板上层液高度为0.07m . 则,,由史密斯关联图得0.2HT=0.60.450.30.150.40.30.21.00.70.10.040.030.020.070.010.040.030.020.070.010.10.090.060.05 史密斯关联图 C0=0.07175由极限空塔气速的计算式:、—分别为气、液相平均密度,kg/m3C20—物系表面张力的负荷系数σm—操作物系的液体平均表面张力, C—操作物系的负荷系数取安全系数0.7,则空塔气速为式中 D—塔径,m Vs—塔内气体流量,m3/s u—空塔气速,即按空塔截面积计算的气体线速度,m/s4.1.2提馏段提馏段的气、液相体积流率为式中 V—提馏段气相流量, L—提馏段液相流量,MVM、MLM—分别为提馏段气、液相平均摩尔质量,、—分别为提馏段气、液相平均密度,kg/m3取板间距HT=0.40mm,取板上层液高度为0.07m . 则,查史密斯关联图得 C0=0.0625由极限空塔气速的计算式:、—分别为气、液相平均密度,kg/m3C20—物系表面张力的负荷系数σm—操作物系的液体平均表面张力, C—操作物系的负荷系数取安全系数0.7,则空塔气速为式中 D—塔径,m Vs—塔内气体流量,m3/s u—空塔气速,即按空塔截面积计算的气体线速度,m/s按标准塔径圆整后D=1.2m塔截面积: 实际空塔气速:精馏段 提馏段项目 板间距(m)板上液层高度(m)塔径(m)精馏段0.47210.001670.40.071.2提馏段0.54080.004280.40.071.24.2 精馏塔有效高度的计算塔 径/D,m0.3~0.50.5~0.80.8~1.61.6~2.42.4~4.0板间距/HT,mm200~300250~350300~450350~600400~600 化工生产中常用板间距为:200,250,300,350,400,450,500,600,700,800mm。
在决定板间距时还应考虑安装、检修的需要例如在塔体人孔处,应留有足够的工作空间,其值不应小于600mm 精馏段有效高度为提馏段有效高度为在进料板上方开一人孔,其高度为0.6m ,故精馏塔的有效高度为4.3塔板主要工艺尺寸的计算4.3.1 溢流装置计算溢流装置包括溢流堰和降液管降液管形式和底隙降液管:弓形、圆形小塔用圆形,一般采用弓形降液管 塔板溢流形式有:U型流、单溢流、双溢流和阶梯流表溢流形式选择塔 径小塔、液体流量小塔径小于2.2m塔径大于2m塔径很大、液体流量很大溢流形式U型流单溢流双溢流阶梯流因塔径 D=1.2m ,可选用单溢流弓形降液管各项计算如下:4.3.1.1 堰长堰长由液相负荷和溢流形式决定对单溢流,一般取,对双溢流,一般取同理,提馏段的为4.3.1.2溢流堰高度由式中 —堰高,m —板上液层高度,m —堰上液层高度,m溢流堰板的形状由决定,>0.6选平直堰;<0.6选齿形堰选用平直堰,堰上液层高度:近似取E=1(一般情况取1,可借用博尔斯对泡罩塔提出的液流收缩系数计算图求取式中 —堰长,m —塔内液体流量,m3/hE—液流收缩系数,则精馏段 同理,提馏段的为取板上清液层高度,故 精馏段提馏段4.3.1.3弓形降液管宽度和截面积由由弓形降液管的参数图查得精馏段 提馏段为避免严重的气泡夹带,停留时间,其中。
验算液体在降液管中停留时间为:精馏段:提馏段: 式中 '—塔内液体流量,m3/h HT—板间距,m Af—弓形降液管截面积,m2故降液管设计合理4.3.1.4 降液管底隙高度底隙 h0:通常在 30-40mm,若太低易于堵塞 根据经验,一般取=0.07 m/s ~0.25 m/s精馏段:提馏段:故降液管底隙高度设计合理4.4 塔板布置塔板的分块塔板类型按结构特点可分为整块式或分块式两种一般,塔径从小于800mm时采用整块式塔板;当塔径在900mm以上时,采用分块式塔板因,故塔板采用分块式① 溢流区区(受液区和降液区) Wd一般两区面积相等② 鼓泡区 气液传质有效区③入口安定区和出口安定区 Ws=50-100mm边缘区:小塔Wc=30-50mm,大塔50-75mm4.4.2边缘区宽度确定4.4.3 开孔区面积计算开孔区面积:其中故式中 —边缘区宽度,m —开孔区面积,m2 —弓形降液管宽度,m —破沫区宽度,m4.3.4 筛孔计算及其排列本体系所处理的物系无腐蚀性,可选用碳钢板,取筛孔直径筛孔按正三角形排列,取孔中心距 为筛孔数目n为:式中 —开孔区面积,m2 t—孔间距,m开孔率为精馏段气体通过筛孔的气速为提馏段气体通过筛孔的气速为4.5 筛板的流体力学验算4.5.1 塔板压降4.5.1.1 干板阻力计算干板阻力:式中 —气体通过筛孔的气速,m/s C0—干筛孔的流量系数、—分别为精馏段气、液相平均密度,kg/m3由查查干筛孔的流量系数图得,故精馏段提馏段4.5.1.2 气体通过液层的阻力计算气体通过液层的阻力: ,式中 Vs—塔内气体流量,m3/s AT—塔截面积,m2 Af—弓形降液管截面积,m2精馏段:提馏段:查充气系数关联图,精馏段得提馏段的式中 —板上液层高度,m β—充气因数,无量纲。
液相为水时,β=0.5,为油时,β=0.2~0.35,为碳氢化合物时,β=0.4~0.54.5.1.3 液体表面张力的阻力计算液体表面张力所产生的阻力:精馏段的为提馏段的为 式中 d0—孔直径,m σm—操作物系的液体平均表面张力,气体通过每层塔板的液柱高度 可按下式计算,即精馏段的为提馏段的为 气体通过每层塔板的压降为精馏段的为(设计允许值) 提馏段的为(设计允许值)4.5.2液沫夹带雾沫夹带量:精馏段的为:同理,提馏段的为 式中 —板上液层高度,m HT—板间距,m σm—操作物系的液体平均表面张力, —气体通过筛孔时的速度,m/s故在本设计中液沫夹带量在允许范围内4.5.3 漏液对筛板塔,漏液点气速:精馏段的为:实际孔速稳定系数为同理,提馏段的为, 稳定系数为式中 —板上液层高度,m C0—干筛孔的流量系数 、—分别为精馏段气、液相平均密度,kg/m3 —与液体表面张力压强降相当的液柱高度,m 故在本设计中无明显漏液4.5.4 液泛为防止塔内发生液泛,降液管内液层高为防止塔内发生液泛,降液管内液层高 式中 HT—板间距,m —堰高,m φ—系数,是考虑到降液管内充气及操作安全两种因素的校正系数。
易气泡物系,不易起泡物系,一般物系,取精馏段的为 板上不设进口堰,液柱液柱提馏段的为 故在本设计中不会发生液泛现象4.6 塔板负荷性能图4.6.1精馏段4.6.1.1 漏液线由 得 由上表数据即可分别作出精馏段的漏液线1lsvs0.000090.2970.00060.3040.0010.30780.0050.33244.6.1.2 液沫夹带线以 为限,求关系如下:由 故 整理得 由上表数据即分别可作出精馏段和提馏段的雾沫夹带线2lsvs0.000091.29750.00061.23520.0011.20.0050.96534.6.1.3 液相负荷下限线对于平直堰,取堰上液层高度作为最小液体负荷标准由式得取 E=1,则 据此可作出与气体流量无关的垂直液相负荷下限线34.液相负荷上限线以作为液体在降液管中停留时间的下限:故据此可分别作出与气体流量无关的垂直液相负荷上限线4 4.6.1.5 液泛线令 由;;;联立得 忽略,将与,与,与的关系式代入上式,并整理得式中 将有关的数据代入,得故 精馏段在操作范围内,任取几个值,依上式计算出个值,计算结果列于表vsls1.0640.000091.03630.00061.01830.0010.77660.005上表为液泛线计算结果由以上数据可分别作出精馏段的液泛线5。
精馏段,操作气液比根据以上各线方程,可作出筛板塔精馏段的负荷性能图精馏段塔板负荷性能图由图中可知,操作线的下限由漏液线控制,上限由液泛线控制,故操作弹性为:2<3.02<4表明其在正常操作弹性范围内4.6.2提馏段4.6.2.1漏液线由 得 lsvs/0.000090.26580.00060.27280.0010.27670.0050.3011由上表数据即可分别作出提馏段的漏液线14.6.2.2雾沫夹带线以 为限,求关系如下:由 故 整理得 由下表数据即分别可作出提馏段的雾沫夹带线2vsls1.28960.000091.22770.00061.19270.010.95930.054.6.2.3 液相负荷下限线对于平直堰,取堰上液层高度作为最小液体负荷标准由式得取 E=1,则 据此可作出与气体流量无关的垂直液相负荷下限线34.6.2.4 液相负荷上限线以作为液体在降液管中停留时间的下限:故据此可分别作出与气体流量无关的垂直液相负荷上限线4 4.6.2.5 液泛线令 由 ;;;联立得 忽略,将与,与,与的关系式代入上式,并整理得式中 将有关的数据代入,得故 提馏段在操作范围内,任取几个值,依上式计算出个值,计算结果列于下表vs/ls1.140.000091.11840.00061.10560.0011.00330.005提馏段,操作气液比:根据以上各线方程,可作出筛板塔提馏段的负荷性能图提馏段塔板负荷性能图由图中可知,操作下限由漏液线,上限由液相负荷上限线控制,故操作弹性为;2<2.083<4表明其在正常操作弹性范围内第五章 热量衡算5.1相关介质的选择5.1.1加热介质的选择选用饱和水蒸气,温度110℃.原因:水蒸气清洁易得,不易结垢,不腐蚀管道。
饱和水蒸气冷凝放热值大,而水蒸气压力越高,冷凝温差越大,管程数相应减少,但水蒸气压力不宜太高5.1.2冷凝剂选冷却水,温度20℃,温升10℃原因:冷却水方便易得,清洁而且不易结垢升温线越高,用水量越小,但平均温差小,传热面积大,综合考虑选择10℃5.2焓值衡算由前面的计算结果可知:塔顶温度℃,塔底温度℃,进料温度℃℃下: 正庚烷330340237.4241.7正己烷比热容 : 正庚烷的比热容: 同理的℃下: ℃下: (1)0℃时塔顶气体上升的焓QV塔顶以0℃为基准2)回流液的焓 回流液组成与塔顶组成相同3)塔顶馏出液的焓(4)冷凝器消耗的焓 (5)进料口的焓℃下: (6)塔底残液的焓(7)再沸器若塔釜热损失为10%,则=0.9,设再沸器热量损失=0.1,则因此,加热器实际热负荷为:5.3附属设备设计5.3.1 进料管查表可知,60℃和80℃正己烷的密度分别为 ,由以下公式解得,对于正庚烷由公式得:,解得,由以下公式:=选取管规格Φ484.5(无缝钢管规则GB/T8163—87)5.3.2回流管解得:解得:取选取管规格Φ34×4(无缝钢管规则GB/T8163—87)5.3.3塔顶蒸气出料管塔顶的温度为68.92℃,此时气相组成:塔顶蒸气密度蒸汽体积流量为取选取管规格Φ168×5.5(无缝钢管规则GB/T8163—87)5.3.4 釜液排出管釜底釜底温度为98.32℃,液相组成=0.0023:对于正己烷的密度: 解得 对于正庚烷的密度:解得 取选取管规格Φ34×2(无缝钢管规则GB/T8163—87)加热蒸汽管选取管规格Φ219×18无缝钢管规则GB/T8163—87)5.4筒体与封头5.4.1筒体查文献可知:5.4.2封头 封头分为椭圆形封头、蝶形封头、球形封头几种,本设计采用椭圆形封头,由公称直径为1200mm,查得曲面高度为300mm,直边高度为40mm,内表面积为1.17平方米,容积为0.272立方米。
5.4.3裙座塔底常用裙座支撑,裙座的结构性能好,连接处产生的局部阻力小,所以它是塔设备的主要支座形式为了制作方便,一般采用圆筒形由于裙座直径大于800mm,故裙座壁厚取16mm基础环内径: 基础环外径: 圆整:基础环厚度考虑到腐蚀余量取18mm:考虑再沸器,裙座取1.5m5.4.4人孔人孔是安装或检修人员进出塔的唯一通道,人孔的设置应便于人进出任何一层塔板由于设置人孔处塔间距离大,且人孔设备过多会使制造时塔体的弯曲度难以达到要求,一般每隔10——20块板才设一个孔,本塔中共37块板,需设置2个人孔,每个人孔直径为600mm由于本塔有32层板,那么应该有两个人孔,人孔直径由于考虑到滨州为北方地区,故人孔直径为600mm本设计在进料板上方和接近塔釜处各设置一人口,板间距为0.6m5.4.5除沫器当空塔气速较大时,塔顶带液现象严重,工艺生产过程中不允许出塔气速夹带雾滴,因此设置除沫器由于本设计空塔气速<1.5m,所以可以不设除沫器5.5塔总体高度的设计5.5.1塔顶空间 塔顶空间是指塔内最上层踏板与塔顶的距离为利于出塔气体夹带的液滴沉降,其高度应大于板间距,设计中通常取塔顶间距为(1.5-2.0)板间距。
故本设计中塔顶空间为5.5.2塔底空间塔底空间高度具有中间贮槽的作用,塔釜液最好能在塔底有10~15min 的储量,以保证塔底料液不致排完塔底产量取10min的储液,则塔底空间体积:则塔底空间高度:5.5.3塔总高度的设计总塔高:5.6 冷凝器的选择有机物蒸气冷凝器设计选用的总体传热系数一般范围为290~1160W/(m2.℃)本设计取K=700 W/(m2.℃)出料液温度:68.92℃(饱和气)~68.92℃(饱和液)冷却水温度:20℃~30℃汽化潜热: 逆流操作:℃ ,平均摩尔质量:蒸汽流量:蒸汽平均汽化热: 传热面积:因为两流体温差小于70℃,故选用列管换热器查柴诚敬《化工原理(上)》P340)查得有关参数如下表3所示参数规格参数规格公称直径DN/mm325管子尺寸25×2.5mm公称压力PN/Mpa1.6管长L/mm4500管程数1管子根数57管程流程面积/19.7管子排列方式正三角形中心排管数9折流挡板形式弓形实际换热面积:面积裕度 符合要求5.7 再沸器的选择水蒸气再沸器设计选用的总体传热系数一般范围为2000~4250W/(m2.℃)本设计取K=2500 W/(m2.℃)水蒸气温度:110℃(蒸汽)~110℃(水)逆流操作:平均摩尔质量:蒸汽流量: 蒸汽汽化热:传热面积:选用列管换热器,由于含有(查柴诚敬《化工原理(上)》P340页附录)查得有关参数如下表:参数规格参数规格公称直径DN/mm450管子尺寸25×2.5mm公称压力PN/Mpa1.6管长L/mm 3000管程数1管子根数135管程流程面积/0.0424管子排列方式正三角形中心排管数13折流挡板形式弓形实际换热面积:面积裕度满足面积裕度的要求故也满足要求5.8 泵的选择.进料泵原料液流量进料液在40度的正己烷的密度:正己烷的密度同理可得:正庚烷的密度:正己烷的粘度:,正庚烷的粘度: 故,进料液的摩尔质量为所以 取管内流速:u=1.6m/s,则:故可选用选取42×2mm,得实际流速为:雷诺数:对新铸铁管,取则相对粗糙度:根据及,查化工原理(上册,柴诚敬编)P48图1—22得进料口高度:压头损失:扬程可选泵的型号:IS50-32-200参考(化工原理上册附录)5.8.2.回流泵同理 回流液流量 选用型号为 的单机单吸离心泵设计感想 通过这次课程设计,让我们不仅把在课程上学到的化工原理的知识得到了应用,同时我们在小组讨论的过程中,共同进步,而且还增加了组员们的感情。
在这个过程中,提高了自己的动手能力,以及合理的应用图书馆以及网络资源,遇到问题,查文献,查教材,还有利用以前学过的excel,word,origin通过这次课程设计,我们达到了多方面的提高,只有遇到问题,才会激发要学习的潜能通过这次课程设计,提高了自己的能力懂得了好多原来不懂得东西感谢老师,让我们找到成就感参考文献[1]陈敏恒等《化工原理》第二版化学工业出版社,1999 [2]贾绍义,柴诚敬主编《化工原理》天津:高等教育出版社,2012[3]李功样,陈兰英,崔英德主编《常用化工单元设备设计》广州:华南理工大学出版社,2003[4]申迎华,郝晓刚主编.《化工原理课程设计》北京:化学工业出版社,2009[5]董大勤主编《化工设备机械基础》北京:化学工业出版社,2011[6]《化工设计手册》编辑委员会.化学工程手册,第1篇化工基础数据;第8篇传热设备及工业生产.北京:化学工业出版社,1986[7]柴诚敬《化工原理(上、下册)》修订版.天津:高等教育出版社,2009[8]熊洁羽《化工制图》.北京:化学工业出版社,2007.[9]马江权,冷一欣《化工原理课程设计》,石油大学出版社,2012附录一(结果汇总)序号项目符号单位计算结果精馏段提馏段1平均压力 106.23110.082平均温度 t75.04589.7453平均摩尔质量液相 89.9197.22气相 88.1194.674平均密度液相 612.73614.198气相 3.233.615平均表面张力 13.2813.066平均黏度206.7211.8637全塔效率0.57488实际塔板数块16218塔径Dm1.21.29空塔气速m/s0.41760.478410溢流装置堰长m0.720.72溢流堰高度m0.05830.0481溢流形式单溢流板上液层高度m0.07堰上液层高度m0.01170.021911入口安定区m0.07512边缘区m0.0613开孔面积0.79214筛孔直径m0.00515筛孔数n299516筛孔气速m/s89.1717开孔率0.07418孔心距tmm0.01750.017519塔板压降 KPa0.720液相负荷上限线 0.048421液相负荷下限线 0.00061422液沫夹带 23液泛 24漏液25操作弹性3.022.083附录二 符号说明Aa——塔板开孔区面积,m2; Af——降液管截面积,m2; A0——筛孔总面积,m2; AT——塔截面积,m2; C0——流量系数,无因次; C——计算umax时的负荷系数,m/s;Cs——气相负荷因子,m/s; d0——筛孔直径,m;D——塔径,m;eV——液沫夹带量,kg(液)/kg(气); E——液流收缩系数,无因次;F——气相动能因子,kg1/2/(s·m1/2); F0——筛孔气相动能因子,kg1/2/(s·m1/2); hl——进口堰与降液管间的水平距离,m; hc——与干板压降相当的液柱高度,m液柱; hd——与液体流过降液管的压降相当的液柱高度,m: hl——与板上液层阻力相当的液柱高度,m; hL——板上清液层高度,m; h0——降液管的底隙高度,m; how——堰上液层高度,m; hw——溢流堰高度,m; h’w——进口堰高度,m; hσ——与克服σ的压降相当的液柱高度,m; H——板式塔高度; Hd——降液管内清液层高度,m; HT——塔板间距,m; K——稳定系数,无因次; lW——堰长,m; Lh——液体体积流量,m3/h; LS——液体体积流量,m3/s; n——筛孔数目; NT——理论板层数; P——操作压力,Pa; △P——压力降,Pa; t——筛孔的中心距,m; u——空塔气速,m/s; u0——气体通过筛孔的速度,m/s; u0.min——漏液点气速,m/s; u’0——液体通过降液管底隙的速度,m/s; VS——气体体积流量,m3/s; LS——液体体积流量,m3/s; Wc——边缘无效区宽度,m; Wd——弓形降液管宽度,m; Z——板式塔的有效高度,m; 希腊字母 β——充气系数,无因次; δ——筛板厚度,mθ——液体在降液管内停留时间,s; μ——粘度,Pa·s; ρ——密度,kg/m3; σ——表面张力,N/m; ——开孔率或孔流系数,无因次; ψ——液体密度校正系数,无因次。
下标 max——最大的;min——最小的; L——液相的; V——气相的 精馏塔的工艺性能图塔板设计图塔设计图塔板设计工艺图 。