高等数学自学一、基本概念一、基本概念1.1.集合集合: :具有某种特定性质的事物的具有某种特定性质的事物的总体总体.组成这个集合的事物称为该集合的组成这个集合的事物称为该集合的.,21naaaA 所具有的特征所具有的特征xxM 无限集无限集,Ma ,Ma .,的的子子集集是是就就说说则则必必若若BABxAx .BA 记作记作第一章第一章 函数函数高等数学自学数集分类数集分类:N-自然数集自然数集Z-整数集整数集Q-有理数集有理数集R-实数集实数集数集间的关系数集间的关系:.,RZZN .,相相等等与与就就称称集集合合且且若若BAABBA )(BA ,2 , 1 A例如例如,0232 xxxC.CA 则则不含任何元素的集合称为不含任何元素的集合称为空集空集.)(记记作作例如例如,01,2 xRxx规定规定 空集为任何集合的子集空集为任何集合的子集.高等数学自学2.2.区间区间: :是指介于某两个实数之间的全体实数是指介于某两个实数之间的全体实数.这两个实数叫做区间的端点这两个实数叫做区间的端点.,baRba 且且bxax 称为开区间称为开区间,),(ba记作记作bxax 称为闭区间称为闭区间,ba记记作作oxaboxab高等数学自学bxax bxax 称为半开区间称为半开区间,称为半开区间称为半开区间,),ba记作记作,(ba记记作作),xaxa ),(bxxb oxaoxb有限区间有限区间无限区间无限区间区间长度的定义区间长度的定义: :两端点间的距离两端点间的距离(线段的长度线段的长度)称为区间的长度称为区间的长度.高等数学自学3.3.邻域邻域: :. 0, 且且是两个实数是两个实数与与设设a).(0aU 记记作作,叫做这邻域的中心叫做这邻域的中心点点a.叫做这邻域的半径叫做这邻域的半径 . )( axaxaUxa a a ,邻域邻域的去心的的去心的点点 a. 0)( axxaU,邻域邻域的的称为点称为点数集数集 aaxx 高等数学自学4.4.常量与变量常量与变量: : 在某过程中数值保持不变的量称为在某过程中数值保持不变的量称为常量常量,而数值变化的量称为而数值变化的量称为变量变量.高等数学自学5.5.绝对值绝对值: : 00aaaaa)0( a运算性质运算性质:;baab ;baba .bababa )0( aax;axa )0( aax;axax 或或绝对值不等式绝对值不等式:高等数学自学因变量因变量自变量自变量.),(称称为为函函数数的的值值域域函函数数值值全全体体组组成成的的数数集集DxxfyyW 变变量量y按按照照一一定定法法则则总总有有确确定定的的数数值值和和它它对对应应,则则称称y是是x的的函函数数,记记作作定定义义 设设x和和y是是两两个个变变量量, ,D是是一一个个给给定定的的数数集集,数集数集D叫做这个函数的叫做这个函数的定义域定义域)(xfy 如如果果对对于于每每个个数数Dx ,二、函数概念二、函数概念高等数学自学函数的两要素函数的两要素: : 定义域定义域与与对应法则对应法则.约定约定: 定义域是自变量所能取的使算式有意义定义域是自变量所能取的使算式有意义的一切实数值的一切实数值.21xy 例例如如, 1 , 1 : D211xy 例例如如,)1 , 1(: Dlnyx例如,:(0,)Darcsinyx例如,: 1,1D高等数学自学定义定义: :.)(),(),(的图形的图形函数函数称为称为点集点集xfyDxxfyyxC oxy),(yxxyWD 如果自变量在定如果自变量在定义域内任取一个数值义域内任取一个数值时,对应的函数值总时,对应的函数值总是只有一个,这种函是只有一个,这种函数叫做单值函数,否数叫做单值函数,否则叫与多值函数则叫与多值函数例例如如,222ayx 高等数学自学 (1) 符号函数符号函数 010001sgnxxxxy当当当当当当几个特殊的函数举例几个特殊的函数举例1-1xyoxxx sgn高等数学自学(2) 取整函数取整函数 y=xx表示不超过表示不超过 的最大整数的最大整数 1 2 3 4 5 -2-4-4 -3 -2 -1 4 3 2 1 -1-3xyo阶梯曲线阶梯曲线x高等数学自学(3) 取最值函数取最值函数)(),(maxxgxfy )(),(minxgxfy yxo)(xf)(xgyxo)(xf)(xg高等数学自学 0, 10, 12)(,2xxxxxf例例如如12 xy12 xy在自变量的不同变化范围中在自变量的不同变化范围中, 对应法则用不同的对应法则用不同的式子来表示的函数式子来表示的函数,称为称为分段函数分段函数.高等数学自学基本初等函数基本初等函数1、幂函数幂函数)( 是常数是常数 xyoxy)1 , 1(112xy xy xy1 xy 高等数学自学2、指数函数、指数函数)1, 0( aaayxxay xay)1( )1( a)1 , 0( xey 高等数学自学3、对数函数、对数函数)1, 0(log aaxyaxyln xyalog xya1log )1( a)0 , 1( 高等数学自学4、三角函数、三角函数正弦函数正弦函数xysin xysin 高等数学自学xycos xycos 余弦函数余弦函数高等数学自学正切函数正切函数xytan xytan 高等数学自学xycot 余切函数余切函数xycot 高等数学自学正割函数正割函数xysec xysec 高等数学自学xycsc 余割函数余割函数xycsc 高等数学自学5、反三角函数、反三角函数xyarcsin xyarcsin 反反正正弦弦函函数数高等数学自学三、函数的特性三、函数的特性M-Myxoy=f(x)X有界有界无界无界M-MyxoX0 x,)(, 0,成成立立有有若若MxfXxMDX 1函数的有界性函数的有界性:.)(否否则则称称无无界界上上有有界界在在则则称称函函数数Xxf高等数学自学2函数的单调性函数的单调性:,)(DIDxf 区间区间的定义域为的定义域为设函数设函数,2121时时当当及及上上任任意意两两点点如如果果对对于于区区间间xxxxI ;)(上上是是单单调调增增加加的的在在区区间间则则称称函函数数Ixf),()()1(21xfxf 恒有恒有)(xfy )(1xf)(2xfxyoI高等数学自学)(xfy )(1xf)(2xfxyoI;)(上是单调减少的上是单调减少的在区间在区间则称函数则称函数Ixf,)(DIDxf 区间区间的定义域为的定义域为设函数设函数,2121时时当当及及上上任任意意两两点点如如果果对对于于区区间间xxxxI ),()()2(21xfxf 恒恒有有高等数学自学3函数的奇偶性函数的奇偶性:偶函数偶函数有有对对于于关关于于原原点点对对称称设设,DxD )()(xfxf yx)( xf )(xfy ox-x)(xf;)(为为偶偶函函数数称称xfy轴对称轴对称高等数学自学有有对于对于关于原点对称关于原点对称设设,DxD )()(xfxf ;)(为为奇奇函函数数称称xf奇函数奇函数)( xf yx)(xfox-x)(xfy 高等数学自学4函数的周期性函数的周期性:(通常说周期函数的周期是指其最小正(通常说周期函数的周期是指其最小正周期周期).2l 2l23l 23l,)(Dxf的定义域为的定义域为设函数设函数如如果果存存在在一一个个不不为为零零的的)()(xflxf 且且为周为周则称则称)(xf.)( ,DlxDxl 使得对于任一使得对于任一数数.)(,的周期的周期称为称为期函数期函数xfl.恒成立恒成立高等数学自学2sincos;xxw 注注1:1:、的的周周期期是是tancot.xxw 注注2 2:、的的周周期期是是tancos.3 例例:+的+的周周期期是是6 6xyx 高等数学自学.( )Egf x(,) 为 内有定义的偶函数,已知y=f(x)的图像关于x=2对称,问f(x)是否为周期函数? 解:解:( )(),(2)(2),(2)(2)( (2)(2),2,( )(4),4.f xfxfxfxfxfxfxf xxyf yf yT 令令则有则有故而故而高等数学自学四四、复合函数复合函数 初等函数初等函数1、复合函数、复合函数,uy 设设,12xu 21xy 定义定义: 设设函函数数)(ufy 的的定定义义域域fD, 而而函函数数)(xu 的的值值域域为为 Z, 若若 ZDf, 则则称称函函数数)(xfy 为为x的的复复合合函函数数.,自变量自变量x,中间变量中间变量u,因变量因变量y高等数学自学注意注意: :1.不是任何两个函数都可以复合成一个复不是任何两个函数都可以复合成一个复合函数的合函数的;,arcsinuy 例如例如;22xu )2arcsin(2xy 2.复合函数可以由两个以上的函数经过复复合函数可以由两个以上的函数经过复合构成合构成.,2cotxy 例例如如,uy ,cotvu .2xv 2、初等函数、初等函数 由常数和基本初等函数经过有限次由常数和基本初等函数经过有限次四则运算和有限次的函数复合步骤所构成并可用四则运算和有限次的函数复合步骤所构成并可用一个式子表示一个式子表示的函数的函数,称为称为初等函数初等函数.高等数学自学例例1 1).(,0, 10, 2)(,1,1,)(2xfxxxxxxxexfx求设解解,0, 10, 2)()(2xxxxxf设高等数学自学例例2 2.)3(,212101)(的的定定义义域域求求函函数数设设 xfxxxf解解 23121301)3(xxxf 212101)(xxxf 122231xx1, 3 : fD故故高等数学自学思考题思考题下列函数能否复合为函数下列函数能否复合为函数)(xgfy ,若能,写出其解析式、定义域、值域若能,写出其解析式、定义域、值域,)()1(uufy 2)(xxxgu ,ln)()2(uufy 1sin)( xxgu高等数学自学思考题解答思考题解答2)()1(xxxgfy ,10| xxDx21, 0)( Df)2(不能不能01sin)( xxg)(xg的的值值域域与与)(uf的的定定义义域域之之交交集集是是空空集集.高等数学自学1116.Eg高等数学自学五、反函数五、反函数0 x0y0 x0yxyDW)(xfy 函函数数oxyDW)(yx 反反函函数数o高等数学自学)(xfy 直直接接函函数数xyo),(abQ),(baP)(xy 反反函函数数 直接函数与反函数的图形关于直线直接函数与反函数的图形关于直线 对称对称.xy 注意注意:只有在给定区间上严格单调的函数,才:只有在给定区间上严格单调的函数,才有反函数。
有反函数高等数学自学思考题思考题设设0 x,函函数数值值21)1(xxxf ,求求函函数数)0()( xxfy的的解解析析表表达达式式.高等数学自学思考题解答思考题解答设设ux 1则则 2111uuuf ,112uu 故故)0(.11)(2 xxxxf高等数学自学有关结论有关结论:1、偶函数偶函数偶函数奇函数奇函数, 奇函数偶函数奇函数;2、奇偶函数复合后还是偶函数,偶偶复合为偶函数,奇奇复合为奇函数;3、奇函数的导数为偶函数,偶函数的导数为奇函数;4、奇函数的积分为偶函数,偶函数的积分未必是奇函数;5、周期函数的导数是周期函数(未必反之);高等数学自学6、无论f(x) 还是 ,都有f(f(x) ;7、若y=f(x) (或 ),则其反函数也是(或 ).高等数学自学练练 习习 题题高等数学自学二、证明二、证明xylg 在在), 0( 上的单调性上的单调性. .三、证明任一定义在区间三、证明任一定义在区间)0(),( aaa上的函数可表上的函数可表 示成一个奇函数与一个偶函数之和示成一个奇函数与一个偶函数之和 . . 四、证明函数四、证明函数acxbaxy 的反函数是其本身的反函数是其本身. .高等数学自学练练 习习 题题._)(ln31)(1的定义域为,则函数,的定义域为、函数xfxf一、填空题一、填空题:._32复复合合而而成成的的函函数数为为,、由由函函数数xueyu ._)0()()(_)0)(_)(sin_10)(22的定义域为的定义域为,的定义域为的定义域为,的定义域为的定义域为,为为)的定义域)的定义域(,则,则,的定义域为的定义域为、若、若 aaxfaxfaaxfxfxfxf高等数学自学.)()()(111011)(,并作出它们的图形,并作出它们的图形,求求,三、设三、设xfgxgfexgxxxxfx 高等数学自学“割之弥细,所割之弥细,所失弥少,割之又失弥少,割之又割,以至于不可割,以至于不可割,则与圆周合割,则与圆周合体而无所失矣体而无所失矣”1 1、割圆术:、割圆术:播放播放刘徽刘徽一、极限概念的引入一、极限概念的引入高等数学自学2 2、截丈问题:、截丈问题:“一尺之棰,日截其半,万世不竭一尺之棰,日截其半,万世不竭”;211 X第一天截下的杖长为第一天截下的杖长为;212122 X为为第二天截下的杖长总和第二天截下的杖长总和;2121212nnXn 天天截截下下的的杖杖长长总总和和为为第第nnX211 1高等数学自学二、数列的定义二、数列的定义定义定义:按自然数按自然数, 3 , 2 , 1编号依次排列的一列数编号依次排列的一列数 ,21nxxx (1)称为称为无穷数列无穷数列,简称简称数列数列.其中的每个数称为数其中的每个数称为数列的列的项项,nx称为称为通项通项(一般项一般项).数列数列(1)记为记为nx.例如例如;,2 , 8 , 4 , 2n;,21,81,41,21n2n21n高等数学自学注意:注意: 1.数列对应着数轴上一个点列数列对应着数轴上一个点列.可看作一可看作一动点在数轴上依次取动点在数轴上依次取.,21nxxx1x2x3x4xnx2.数列是整标函数数列是整标函数).(nfxn ;,)1( , 1 , 1, 11 n)1(1 n;,)1(,34,21, 21nnn )1(1nnn ,333,33, 3 高等数学自学 高等数学自学高等数学自学 高等数学自学 高等数学自学高等数学自学 高等数学自学Ex.高等数学自学Ex.高等数学自学.)1(11时时的的变变化化趋趋势势当当观观察察数数列列 nnn三、数列的极限三、数列的极限. 1)1(1,1无限接近于无限接近于无限增大时无限增大时当当nxnnn 高等数学自学1216.EgB高等数学自学定定义义 如如果果对对于于任任意意给给定定的的正正数数 ( (不不论论它它多多么么小小) ), ,总总存存在在正正数数N, ,使使得得对对于于Nn 时时的的一一切切nx, ,不不等等式式 axn都都成成立立, ,那那末末就就称称常常数数a是是数数列列nx的的极极限限, ,或或者者称称数数列列nx收收敛敛于于a, ,记记为为 ,limaxnn 或或).( naxn如果数列没有极限如果数列没有极限,就说数列是发散的就说数列是发散的.注意:注意:;. 1的的无无限限接接近近与与刻刻划划了了不不等等式式axaxnn . 2有有关关与与任任意意给给定定的的正正数数 N高等数学自学例例1. 1)1(lim1 nnnn证证明明例例2.lim),(CxCCxnnn 证证明明为为常常数数设设例例3. 1, 0lim nn其中其中证明证明高等数学自学四、四、数列极限的性质数列极限的性质1、有界性、有界性定定义义: 对对数数列列nx, 若若存存在在正正数数M, 使使得得一一切切自自然然数数n, 恒恒有有Mxn 成成立立, 则则称称数数列列nx有有界界,否否则则, 称称为为无无界界.例如例如,;1 nnxn数列数列.2nnx 数数列列数数轴轴上上对对应应于于有有界界数数列列的的点点nx都都落落在在闭闭区区间间,MM 上上.有界有界无界无界高等数学自学定理定理1 1 收敛的数列必定有界收敛的数列必定有界. .注意:注意:有界性是数列收敛的必要条件有界性是数列收敛的必要条件.推论推论 无界数列必定发散无界数列必定发散. .2、唯一性、唯一性定理定理2 2 每个收敛的数列只有一个极限每个收敛的数列只有一个极限. .)1(1是是发发散散的的证证明明数数列列 nnx定理定理3 3 收敛数列的任一子数列也收敛收敛数列的任一子数列也收敛, ,且极限相同且极限相同高等数学自学.sin时时的的变变化化趋趋势势当当观观察察函函数数 xxx一、自变量趋向无穷大时函数的极限一、自变量趋向无穷大时函数的极限 Axfx)(lim:定理定理.)(lim)(limAxfAxfxx 且且. 0sinlimxxxxxysin .)(,)(lim:的的图图形形的的水水平平渐渐近近线线是是函函数数则则直直线线如如果果定定义义xfycycxfx 高等数学自学)(xfy AAA0 x0 x0 xxyo注意:注意:;)(. 10是是否否有有定定义义无无关关在在点点函函数数极极限限与与xxf. 2有有关关与与任任意意给给定定的的正正数数 二、自变量趋向有限值时函数的极限二、自变量趋向有限值时函数的极限问问题题: :函函数数)(xfy 在在0 xx 的的过过程程中中,对对应应函函数数值值)(xf无无限限趋趋近近于于确确定定值值 A.高等数学自学例例4. 211lim21 xxx证证明明例例2).( ,lim0为为常常数数证证明明CCCxx 例例3.lim00 xxxx 证证明明例例5.lim,0:000 xxxxx 时时当当证明证明高等数学自学3.单侧极限单侧极限:例如例如,. 1)(lim0, 10,1)(02 xfxxxxxfx证明证明设设两种情况分别讨论两种情况分别讨论和和分分00 xx,0 xx从左侧无限趋近从左侧无限趋近; 00 xx记作记作,0 xx从右侧无限趋近从右侧无限趋近; 00 xx记记作作yox1xy 112 xy高等数学自学左极限左极限右极限右极限.)0()(lim0)(000AxfAxfxxxx 或或记记作作.)0()(lim0)(000AxfAxfxxxx 或或记记作作高等数学自学.)0()0()(lim:000AxfxfAxfxx 定定理理.lim0不不存存在在验验证证xxxyx11 oxxxxxx 00limlim左右极限存在但不相等左右极限存在但不相等,.)(lim0不不存存在在xfx例例6证证1)1(lim0 xxxxxxx00limlim 11lim0 x高等数学自学三、函数极限的性质三、函数极限的性质1.有界性有界性2.唯一性唯一性高等数学自学3.不等式性质不等式性质).0)(0)(,),(, 0),0(0,)(lim000 xfxfxUxAAAxfxx或或时时当当则则或或且且若若定理定理( (保号性保号性) ).0(0),0)(0)(,),(, 0,)(lim000 AAxfxfxUxAxfxx或或则则或或时时当当且且若若推论推论高等数学自学4.子列收敛性子列收敛性(函数极限与数列极限的关系函数极限与数列极限的关系).)(lim,)()(,)(limAxfaxxfxfAxfnnnax 则则有有时时的的一一个个子子列列当当是是数数列列若若定理定理高等数学自学xy1sin 例例7.1sinlim0不不存存在在证证明明xx证证 ,1 nxn取取, 0lim nnx; 0 nx且且 ,2141 nxn取取lim1,nnx ; 0 nx且且高等数学自学思考题思考题试试问问函函数数 0,50,100,1sin)(2xxxxxxxf在在0 x处处的的左左、右右极极限限是是否否存存在在?当当0 x时时,)(xf的的极极限限是是否否存存在在?高等数学自学思考题解答思考题解答 )(lim0 xfx, 5)5(lim20 xx左极限存在左极限存在, )(lim0 xfx, 01sinlim0 xxx右极限存在右极限存在, )(lim0 xfx)(lim0 xfx )(lim0 xfx不存在不存在.高等数学自学思考题思考题若若0)( xf,且,且Axfx )(lim,问:能否保证有问:能否保证有0 A的结论?试举例说明的结论?试举例说明.例例xxf1)( 0 x 高等数学自学一、极限运算法则一、极限运算法则定理定理. 0,)()(lim)3(;)()(lim)2(;)()(lim)1(,)(lim,)(lim BBAxgxfBAxgxfBAxgxfBxgAxf其中其中则则设设推论推论1 1).(lim)(lim,)(limxfcxcfcxf 则则为为常常数数而而存存在在如如果果.)(lim)(lim,)(limnnxfxfnxf 则则是是正正整整数数而而存存在在如如果果推论推论2 2高等数学自学二、求极限方法举例二、求极限方法举例例例1 1.531lim232 xxxx求求解解)53(lim22 xxx5lim3limlim2222 xxxxx5limlim3)lim(2222 xxxxx52322 , 03 531lim232 xxxx)53(lim1limlim22232 xxxxxx.37 3123 高等数学自学解解)32(lim21 xxx, 0 商的法则不能用商的法则不能用)14(lim1 xx又又, 03 1432lim21 xxxx. 030 由无穷小与无穷大的关系由无穷小与无穷大的关系,得得例例2 2.3214lim21 xxxx求求.3214lim21 xxxx高等数学自学解解例例3 3.321lim221 xxxx求求.,1分母的极限都是零分母的极限都是零分子分子时时x.1后再求极限后再求极限因子因子先约去不为零的无穷小先约去不为零的无穷小 x)1)(3()1)(1(lim321lim1221 xxxxxxxxx31lim1 xxx.21 )00(型型(消去零因子法消去零因子法)高等数学自学例例4 4.147532lim2323 xxxxx求求解解.,分母的极限都是无穷大分母的极限都是无穷大分子分子时时 x)(型型 .,3再再求求极极限限分分出出无无穷穷小小去去除除分分子子分分母母先先用用x332323147532lim147532limxxxxxxxxxx .72 (无穷小因子分出法无穷小因子分出法)高等数学自学916.Eg答案:A高等数学自学例例5 5).21(lim222nnnnn 求求解解是无限多个无穷小之和是无限多个无穷小之和时时, n222221lim)21(limnnnnnnnn 2)1(21limnnnn )11(21limnn .21 先变形再求极限先变形再求极限.高等数学自学例例7 7).(lim,0, 10,1)(02xfxxxxxfx 求求设设yox1xy 112 xy解解两个单侧极限为两个单侧极限为是函数的分段点是函数的分段点,0 x)1(lim)(lim00 xxfxx , 1 )1(lim)(lim200 xxfxx, 1 左右极限存在且相等左右极限存在且相等,. 1)(lim0 xfx故故高等数学自学.)(lim)(lim)()(lim)()(lim)(00000AufxfxxxfAufaxxaxaxxxuauxxauxx 时的极限也存在,且时的极限也存在,且当当则复合函数则复合函数,又,又的某去心邻域内的某去心邻域内但在点但在点,即,即时的极限存在且等于时的极限存在且等于当当运算法则)设函数运算法则)设函数定理(复合函数的极限定理(复合函数的极限)(lim0 xfxx )(limufau)(xu 令令)(lim0 xaxx 意义:意义:高等数学自学例例8 8333lim0).xaxaaxa 求求(解解axaxaxax 3233)()(lim原原式式3233232)(limaaxxaxax 0 高等数学自学._1sinlim520 xxx、._33lim132 xxx、一、填空题一、填空题:._11lim231 xxx、._)112)(11(lim32 xxxx、._5)3)(2)(1(lim43 nnnnn、._coslim6 xxxeex、练练 习习 题题高等数学自学._2324lim72240 xxxxxx、._)12()23()32(lim8503020 xxxx、二、求下列各极限二、求下列各极限:)21.41211(lim1nn 、hxhxh220)(lim2 、)1311(lim331xxx 、38231lim4xxx 、)(lim5xxxxx 、高等数学自学一、极限存在准则一、极限存在准则1.夹逼准则夹逼准则准准则则 如如果果数数列列nnyx ,及及nz满满足足下下列列条条件件: :,lim,lim)2()3 , 2 , 1()1(azaynzxynnnnnnn 那那末末数数列列nx的的极极限限存存在在, , 且且axnn lim. .注意注意: :.,的极限是容易求的的极限是容易求的与与并且并且与与键是构造出键是构造出利用夹逼准则求极限关利用夹逼准则求极限关nnnnzyzy高等数学自学准准则则 如如果果当当)(00 xUx ( (或或Mx ) )时时, ,有有,)(lim,)(lim)2(),()()()1()()(00AxhAxgxhxfxgxxxxxx 那那末末)(lim)(0 xfxxx 存存在在, , 且且等等于于A. .高等数学自学例例1 1).12111(lim222nnnnn 求求解解222211,11nnnnnnnnnnnnnn111limlim2 又又, 1 22111lim1limnnnnn , 1 由夹逼定理得由夹逼定理得. 1)12111(lim222 nnnnn高等数学自学x1x2x3x1 nxnx2.单调有界准则单调有界准则满满足足条条件件如如果果数数列列nx,121 nnxxxx单调增加单调增加,121 nnxxxx单调减少单调减少单调数列单调数列准准则则 单单调调有有界界数数列列必必有有极极限限.几何解释几何解释:AM极限极限高等数学自学例例2 2.)(333的的极极限限存存在在式式重重根根证证明明数数列列nxn 证证,1nnxx 显然显然 ;是单调递增的是单调递增的nx, 331 x又又, 3 kx假假定定kkxx 3133 , 3 ;是是有有界界的的nx.lim存在存在nnx ,31nnxx ,321nnxx ),3(limlim21nnnnxx ,32AA 2131,2131 AA解解得得(舍去舍去).2131lim nnx3, 3 3, 3 3,3 例例:高等数学自学例例3 3.cos1lim20 xxx 求求解解2202sin2limxxx 原原式式220)2(2sinlim21xxx 20)22sin(lim21xxx 2121 .21 二、两个重要极限二、两个重要极限(1)1sinlim0 xxx高等数学自学(2)exxx )11(limennn )11(lim,1xt 令令101lim(1)lim(1)txxtxetexxx 10)1(lim高等数学自学例例4 4.)11(limxxx 求求解解xxx )11(1lim1)11(lim xxx原式原式.1e 例例5 5.)23(lim2xxxx 求求解解422)211()211(lim xxxx原原式式.2e 高等数学自学._3cotlim40 xxx、一、填空题一、填空题:._sinlim10 xxx 、._3sin2sinlim20 xxx、._2sinlim5 xxx、._)1(lim610 xxx、练练 习习 题题._cotlim30 xxx、arc高等数学自学xxx2tan4)(tanlim2 、._)1(lim72 xxxx、._)11(lim8 xxx、xxxxsin2cos1lim10 、xxaxax)(lim3 、二、求下列各极限二、求下列各极限:nnnn)11(lim42 、高等数学自学 5 5、nnnn1)321(lim 三、三、 利用极限存在准则证明数列利用极限存在准则证明数列,.222,22, 2 的极限存在,并求的极限存在,并求出该极限出该极限 . .高等数学自学一、无穷小一、无穷小1、定义、定义:极限为零的变量称为极限为零的变量称为无穷小无穷小.高等数学自学例如例如, 0sinlim0 xx.0sin时时的的无无穷穷小小是是当当函函数数xx, 01lim xx.1时时的的无无穷穷小小是是当当函函数数 xx, 0)1(lim nnn.)1(时的无穷小时的无穷小是当是当数列数列 nnn注意注意(1)无穷小是变量)无穷小是变量,不能与很小的数混淆不能与很小的数混淆;(2)零是可以作为无穷小的唯一的数)零是可以作为无穷小的唯一的数.高等数学自学2、无穷小与函数极限的关系、无穷小与函数极限的关系: 定定理理 1 1 ),()()(lim0 xAxfAxfxx 其其中中)(x 是是当当0 xx 时时的的无无穷穷小小.3、无穷小的运算性质、无穷小的运算性质:定理定理2 在同一过程中在同一过程中,有限个无穷小的代数和仍有限个无穷小的代数和仍是无穷小是无穷小.注意注意无穷多个无穷小的代数和未必是无穷小无穷多个无穷小的代数和未必是无穷小. .是是无无穷穷小小,时时例例如如nn1, .11不不是是无无穷穷小小之之和和为为个个但但nn高等数学自学推论推论1 常数与无穷小的乘积是无穷小常数与无穷小的乘积是无穷小.推论推论2 有限个无穷小的乘积也是无穷小有限个无穷小的乘积也是无穷小.xxxxx1arctan,1sin,0,2时时当当例例如如都是无穷小都是无穷小定理定理3 有界函数与无穷有界函数与无穷 小的乘积是无穷小小的乘积是无穷小.高等数学自学特殊情形:正无穷大,负无穷大特殊情形:正无穷大,负无穷大)(lim()(lim)()(00 xfxfxxxxxx或或注意注意(1)无穷大是变量)无穷大是变量,不能与很大的数混淆不能与很大的数混淆;(3)无穷大是一种特殊的无界变量)无穷大是一种特殊的无界变量,但是无但是无界变量未必是无穷大界变量未必是无穷大.)(lim20认认为为极极限限存存在在)切切勿勿将将( xfxx二、无穷大二、无穷大绝对值无限增大的变量称为绝对值无限增大的变量称为无穷大无穷大.高等数学自学xxy1sin1 .,1sin1,0,但但不不是是无无穷穷大大是是一一个个无无界界变变量量时时当当例例如如xxyx ), 3 , 2 , 1 , 0(221)1( kkxk取取,22)( kxyk.)(,Mxykk 充充分分大大时时当当), 3 , 2 , 1 , 0(21)2( kkxk取取, kxk 充充分分大大时时当当 kkxyk2sin2)(但但.0M 不是无穷大不是无穷大无界,无界,高等数学自学.11lim1 xx证证明明例例.)(,)(lim:00的图形的铅直渐近线的图形的铅直渐近线是函数是函数则直线则直线如果如果定义定义xfyxxxfxx 11 xy高等数学自学516.EgA高等数学自学三、无穷小与无穷大的关系三、无穷小与无穷大的关系定理定理4 4 在同一过程中在同一过程中, ,无穷大的倒数为无穷小无穷大的倒数为无穷小; ;恒不为零的无穷小的倒数为无穷大恒不为零的无穷小的倒数为无穷大. .四、小结四、小结无穷小与无穷大是相对于过程而言的无穷小与无穷大是相对于过程而言的.高等数学自学一、无穷小的比较一、无穷小的比较例如例如,xxx3lim20 xxxsinlim02201sinlimxxxx.1sin,sin,022都是无穷小都是无穷小时时当当xxxxxx 极限不同极限不同, 反映了趋向于零的反映了趋向于零的“快慢快慢”程度不程度不同同.;32要快得多要快得多比比 xx;sin大大致致相相同同与与xx不可比不可比., 0 , 1 xx1sinlim0 .不不存存在在观察各极限观察各极限型)型)(00高等数学自学;记作记作高阶的无穷小高阶的无穷小是比是比,就说,就说如果如果)(,0lim)1( o定义定义: :. 0, 且且穷小穷小是同一过程中的两个无是同一过程中的两个无设设;, 0lim)3(是是同同阶阶的的无无穷穷小小与与就就说说如如果果 C;, 1lim 记作记作是等价的无穷小是等价的无穷小与与则称则称如果如果特殊地,特殊地,低阶的无穷小低阶的无穷小是比是比,就说,就说如果如果 lim)(高等数学自学., 0, 0lim)4(无穷小无穷小阶的阶的的的是是就说就说如果如果kkCk ,03lim20 xxx,1sinlim0 xxx;302高阶的无穷小高阶的无穷小是比是比时,时,当当xxx ).0()3(2 xxox即即是是等等价价无无穷穷小小与与时时,当当xxxsin0).0(sinxxx即即例如,例如,高等数学自学例例1 1.sintan,0:的三阶无穷小的三阶无穷小为为时时当当证明证明xxxx 解解30sintanlimxxxx )cos1sincos1(lim20 xxxxxx ,21 .sintan的三阶无穷小的三阶无穷小为为xxx 2000cos1limsinlimcos1limxxxxxxxx 高等数学自学例例解解)1ln(lim1lim00uuxeuxx .1lim0 xexx 求求,1uex 令令),1ln(ux 即即, 0,0ux有有时时则则当当uuu10)1ln(1lim uuu10)1ln(lim1 eln1 . 1 . 1),1ln(0 xexxxx时时,即即,当当高等数学自学意义意义:用等价无穷小可给出函数的近似表达式:用等价无穷小可给出函数的近似表达式例如例如,),(sinxoxx ).(21cos122xoxx ,0时时当当 xxycos1 221yx 常用等价无穷小常用等价无穷小: :,0时时当当 x)0(1)1(,21cos1, 1)1ln(arctanarcsintansin2 aaxxxxexxxxxxxax.21cos1,sin2xxxx 高等数学自学二、等价无穷小代换二、等价无穷小代换定理定理( (等价无穷小代换定理等价无穷小代换定理) ).limlim,lim, 则则存存在在且且设设证证 lim)lim( limlimlim.lim 高等数学自学例例.cos12tanlim20 xxx 求求解解.22tan,21cos1,02xxxxx 时时当当22021)2(limxxx 原式原式. 8 高等数学自学不能滥用等价无穷小代换不能滥用等价无穷小代换.切记,只可对函数的因子作等价无穷小代换,切记,只可对函数的因子作等价无穷小代换,对于代数和中各无穷小不能分别代换对于代数和中各无穷小不能分别代换. .注意注意例例.arcsinsin)1(lim0 xxxx 求求解解.arcsin,sin,0 xxxxx时时当当xxxx)1(lim0 原原式式. 1 )1(lim0 xx高等数学自学例例.2sinsintanlim30 xxxx 求求解解.sin,tan,0 xxxxx时时当当 30)2(limxxxx 原式原式. 0 解解,0时时当当 x)cos1(tansintanxxxx ,213x,22sinxx330)2(21limxxx 原式原式.161 错错 高等数学自学一、一、 填空题:填空题:1 1、xxx2sin3tanlim0=_.=_.2 2、mnxxx)(sinarcsinlim0=_.=_.3 3、xxx)21ln(lim0 =_.=_.4 4、xxxxxarctan1sin1lim20 =_.=_.5 5、nnnx2sin2lim =_.=_.6 6、xaxnx1)1(lim10 = =_ _ _ _ _ _ _ _ _ _. .练练 习习 题题高等数学自学7 7、当、当0 x时,时,)0(3 aaxa 对于对于x是是_阶无穷小阶无穷小 . .8 8、当、当0 x时,无穷小时,无穷小xcos1 与与nmx等价,则等价,则 ._, nm 二、求下列各极限:二、求下列各极限:1 1、xxxx30sinsintanlim ;2 2、 eelim;3 3、xxxx sinsinlim0 ;4 4、axaxax tantanlim;高等数学自学一、函数的连续性一、函数的连续性1.函数的增量函数的增量.,),(,)()(0000的增量的增量称为自变量在点称为自变量在点内有定义内有定义在在设函数设函数xxxxxUxxUxf .)(),()(0的的增增量量相相应应于于称称为为函函数数xxfxfxfy xy0 xy00 xxx 0)(xfy x 0 xxx 0 x y y )(xfy 高等数学自学定义定义 2 2 设函数设函数)(xf在在)(0 xU 内有定义内有定义, ,如果如果函数函数)(xf当当0 xx 时的极限存在时的极限存在, ,且等于它在且等于它在点点0 x处的函数值处的函数值)(0 xf, ,即即 )()(lim00 xfxfxx 那末就称函数那末就称函数)(xf在点在点0 x连续连续. .2.连续的定义连续的定义高等数学自学例例1 1.0, 0, 0, 0,1sin)(处连续处连续在在试证函数试证函数 xxxxxxf证证, 01sinlim0 xxx, 0)0( f又又由定义由定义2知知.0)(处处连连续续在在函函数数 xxf),0()(lim0fxfx 高等数学自学3.单侧连续单侧连续;)(),()0(,()(0000处左连续处左连续在点在点则称则称且且内有定义内有定义在在若函数若函数xxfxfxfxaxf 定理定理.)()(00处处既既左左连连续续又又右右连连续续在在是是函函数数处处连连续续在在函函数数xxfxxf.)(),()0(,),)(0000处右连续处右连续在点在点则称则称且且内有定义内有定义在在若函数若函数xxfxfxfbxxf 高等数学自学例例2 2.0, 0, 2, 0, 2)(连连续续性性处处的的在在讨讨论论函函数数 xxxxxxf解解)2(lim)(lim00 xxfxx2 ),0(f )2(lim)(lim00 xxfxx2 ),0(f 右连续但不左连续右连续但不左连续 ,.0)(处不连续处不连续在点在点故函数故函数 xxf高等数学自学1016.Eg:.A答答案案高等数学自学416.Eg:.D答答案案高等数学自学4.连续函数与连续区间连续函数与连续区间在区间上每一点都连续的函数在区间上每一点都连续的函数,叫做在该区间上叫做在该区间上的的连续函数连续函数,或者说函数在该区间上连续或者说函数在该区间上连续.连续函数的图形是一条连续而不间断的曲线连续函数的图形是一条连续而不间断的曲线.高等数学自学二、函数的间断点二、函数的间断点:)(0条条件件处处连连续续必必须须满满足足的的三三个个在在点点函函数数xxf;)()1(0处有定义处有定义在点在点xxf;)(lim)2(0存在存在xfxx).()(lim)3(00 xfxfxx ).()(),()(,00或间断点或间断点的不连续点的不连续点为为并称点并称点或间断或间断处不连续处不连续在点在点函数函数则称则称要有一个不满足要有一个不满足如果上述三个条件中只如果上述三个条件中只xfxxxf高等数学自学1.跳跃间断点跳跃间断点.)(),0()0(,)(0000的的跳跳跃跃间间断断点点为为函函数数则则称称点点但但存存在在右右极极限限都都处处左左在在点点如如果果xfxxfxfxxf 例例4 4.0, 0,1, 0,)(处处的的连连续续性性在在讨讨论论函函数数 xxxxxxf解解, 0)00( f, 1)00( f),00()00( ff.0为函数的跳跃间断点为函数的跳跃间断点 xoxy高等数学自学2.可去间断点可去间断点.)()(),()(lim,)(00000的的可可去去间间断断点点为为函函数数义义则则称称点点处处无无定定在在点点或或但但处处的的极极限限存存在在在在点点如如果果xfxxxfxfAxfxxfxx 例例5 5.1, 1,11, 10, 1,2)(处的连续性处的连续性在在讨论函数讨论函数 xxxxxxxfoxy112xy 1xy2 高等数学自学解解, 1)1( f, 2)01( f, 2)01( f2)(lim1 xfx),1(f .0为函数的可去间断点为函数的可去间断点 x注意注意 可去间断点只要改变或者补充间断处函可去间断点只要改变或者补充间断处函数的定义数的定义, 则可使其变为连续点则可使其变为连续点.高等数学自学如例如例5中中, 2)1( f令令.1, 1,1, 10,2)(处连续处连续在在则则 xxxxxxf跳跃间断点与可去间断点统称为第一类间断点跳跃间断点与可去间断点统称为第一类间断点. .特点特点.0处处的的左左、右右极极限限都都存存在在函函数数在在点点 xoxy112高等数学自学3.第二类间断点第二类间断点.)(,)(00的的第第二二类类间间断断点点为为函函数数则则称称点点在在右右极极限限至至少少有有一一个个不不存存处处的的左左、在在点点如如果果xfxxxf例例6 6.0, 0, 0,1)(处处的的连连续续性性在在讨讨论论函函数数 xxxxxxf解解oxy, 0)00( f,)00( f.1为函数的第二类间断点为函数的第二类间断点 x.断断点点这这种种情情况况称称为为无无穷穷间间高等数学自学例例7 7.01sin)(处的连续性处的连续性在在讨论函数讨论函数 xxxf解解xy1sin ,0处没有定义处没有定义在在 x.1sinlim0不不存存在在且且xx.0为为第第二二类类间间断断点点 x.断断点点这这种种情情况况称称为为的的振振荡荡间间注意注意 不要以为函数的间断点只是个别的几个点不要以为函数的间断点只是个别的几个点.高等数学自学o1x2x3xyx xfy 判断下列间断点类型判断下列间断点类型:高等数学自学例例8 8.0, 0, 0,cos)(,处处连连续续在在函函数数取取何何值值时时当当 xxxaxxxfa解解xxfxxcoslim)(lim00 , 1 )(lim)(lim00 xaxfxx , a ,)0(af ),0()00()00(fff 要要使使,1时时故当且仅当故当且仅当 a.0)(处处连连续续在在函函数数 xxf, 1 a高等数学自学三、小结三、小结1.函数在一点连续必须满足的三个条件函数在一点连续必须满足的三个条件;3.间断点的分类与判别间断点的分类与判别;2.区间上的连续函数区间上的连续函数;第一类间断点第一类间断点:可去型可去型,跳跃型跳跃型.第二类间断点第二类间断点:无穷型无穷型,振荡型振荡型.间断点间断点(见下图见下图)定理定理 一切初等函数在其一切初等函数在其定义区间定义区间内都是连续的内都是连续的. .高等数学自学可去型可去型第一类间断点第一类间断点oyx跳跃型跳跃型无穷型无穷型振荡型振荡型第二类间断点第二类间断点oyx0 xoyx0 xoyx0 x高等数学自学思考题思考题高等数学自学一、一、 填空题:填空题:1 1、 指出指出23122 xxxy 在在1 x是第是第_类间类间断点;在断点;在2 x是第是第_类间断点类间断点 . .2 2、 指出指出)1(22 xxxxy在在0 x是第是第_类间类间断点;在断点;在1 x是第是第_类间断点;在类间断点;在1 x是第是第_类间断点类间断点 . .二、二、 研究函数研究函数 1, 11,)(xxxxf的连续性,并画出函数的连续性,并画出函数 的图形的图形 . .练练 习习 题题高等数学自学三、三、 指出下列函数在指定范围内的间断点,并说明这些指出下列函数在指定范围内的间断点,并说明这些间断点的类型,如果是可去间断点,则补充或改变函间断点的类型,如果是可去间断点,则补充或改变函数的定义使它连续数的定义使它连续 . . 1 1、 1,31, 1)(xxxxxf在在Rx 上上 . . 2 2、 xxxftan)( , ,在在Rx 上上 . . 四、四、 试确定试确定ba,的值的值, ,使使)1)()( xaxbexfx, (1 1)有无穷间断点)有无穷间断点0 x;(;( 2 2)有可去间断点)有可去间断点1 x . . 高等数学自学一一、 填填空空题题:1 1、 43lim20 xxx_ _ _ _ _ _ _ _ _ _ _ _ _. .2 2、 xxx11lim0_ _ _ _ _ _ _ _ _ _ _ _ _. .3 3、 )2cos2ln(lim6xx _ _ _ _ _ _ _ _ _ _ _ _ _. .4 4、 xxx24tancos22lim _ _ _ _ _ _ _ _ _ _ _ _ _. .5 5、 tett1lim2_ _ _ _ _ _ _ _ _ _ _ _ _. . 6 6、设设,0,0,)( xxaxexfx 当当 a_ _ _ _ _ _时时,)(xf在在 ),( 上上连连续续 . .练练 习习 题题高等数学自学7 7、 函数函数61)(24 xxxxxf的连续区间为的连续区间为 _. _.8 8、 设设 时时当当时时当当1,11,2cos)(xxxxxf确定确定 )(lim21xfx_; ; )(lim1xfx_._.二、二、 计算下列各极限:计算下列各极限:1 1、axaxax sinsinlim; 2 2、xxxcot20)tan31(lim ;3 3、1)1232(lim xxxx;高等数学自学一、最大值和最小值定理一、最大值和最小值定理定义定义: :.)()()()()()()(,),(0000值值小小上的最大上的最大在区间在区间是函数是函数则称则称都有都有使得对于任一使得对于任一如果有如果有上有定义的函数上有定义的函数对于在区间对于在区间IxfxfxfxfxfxfIxIxxfI 例如例如,sgn xy ,),(上上在在, 2max y; 1min y,), 0(上上在在. 1minmax yy,sin1xy ,2 , 0上上在在 ; 0min y, 1max y闭区间连续函数性质闭区间连续函数性质高等数学自学定理定理1(1(最大值和最小值定理最大值和最小值定理) ) 在闭区间上连续在闭区间上连续的函数一定有最大值和最小值的函数一定有最大值和最小值. .ab2 1 xyo)(xfy 注意注意: :1.若区间是开区间若区间是开区间, 定理不一定成立定理不一定成立; 2.若区间内有间断点若区间内有间断点, 定理不一定成立定理不一定成立.高等数学自学xyo)(xfy 211xyo2 )(xfy 定理定理2(2(有界性定理有界性定理) ) 在闭区间上连续的函数一定在闭区间上连续的函数一定在该区间上有界在该区间上有界. .证证,)(上上连连续续在在设设函函数数baxf,bax ,)(Mxfm 有有,maxMmK 取取.)(Kxf 则有则有.,)(上上有有界界在在函函数数baxf高等数学自学二、介值定理二、介值定理定定理理 3 3( (零零点点定定理理) ) 设设函函数数)(xf在在闭闭区区间间 ba,上上连连续续,且且)(af与与)(bf异异号号( (即即0)()( bfaf) ), ,那那末末在在开开区区间间 ba,内内至至少少有有函函数数)(xf的的一一个个零零点点, ,即即至至少少有有一一点点 )(ba ,使使0)( f. .定义定义: :.)(, 0)(000的的零零点点称称为为函函数数则则使使如如果果xfxxfx .),(0)(内内至至少少存存在在一一个个实实根根在在即即方方程程baxf 高等数学自学ab3 2 1 几何解释几何解释:.,)(轴至少有一个交点轴至少有一个交点线弧与线弧与则曲则曲轴的不同侧轴的不同侧端点位于端点位于的两个的两个连续曲线弧连续曲线弧xxxfy xyo)(xfy 高等数学自学推广的推广的零点定理:零点定理:若函数若函数 f(x) 在区间在区间(a,b)内连续,且满足内连续,且满足00( ),( ).limlimxaxbf af b 则至少存在一点则至少存在一点 (a,b),使得使得 f() 0.高等数学自学918.Eg:.C答答案案高等数学自学例例1 1.)1 , 0(01423至至少少有有一一根根内内在在区区间间证证明明方方程程 xx证证, 14)(23 xxxf令令,1 , 0)(上上连连续续在在则则xf, 01)0( f又又, 02)1( f由零点定理由零点定理,使使),(ba , 0)( f, 01423 即即.)1 , 0(01423 内至少有一根内至少有一根在在方程方程 xx高等数学自学例例2 2.)(),。