八年级数学上册习题集第一章 勾股定理1、勾股定理及其逆定理一、填空题1.△ABC,∠C=90°,a=9,b=12,则c=__________2.△ABC,AC=6,BC=8,当AB=__________时,∠C=90°3.等边三角形的边长为6 cm,则它的高为__________4.△ABC中,∠C=90°,∠A=30°,则BC∶AC∶AB=__________5.直角三角形两直角边长分别为3 和4,则斜边上的高为__________6.等腰三角形的顶角为120°,底边上的高为3,则它的周长为__________7.若直角三角形两直角边之比为3∶4,斜边长为20,则它的面积为__________8.等腰三角形的两边长为2和4,则底边上的高为__________9.如图1,在高2米,坡角为30°的楼梯表面铺地毯,地毯的长至少需________米10.若一个三角形的三边长分别为3,4,x,则使此三角形是直角三角形的x2的值是__________ 图1 图2 图3 图4二、选择题11.下列各组数中,不能构成直角三角形的一组是( )A.1,2, B.1,2, C.3,4,5 D.6,8,1212.如图2,△ABC中AD⊥BC于D,AB=3,BD=2,DC=1,则AC等于( )A.6 B. C. D.413.已知三角形的三边长之比为1∶1∶,则此三角形一定是( )A.锐角三角形 B.钝角三角形 C.等边三角形 D.等腰直角三角形14.直角三角形的斜边比一直角边长2 cm,另一直角边长为6 cm,则它的斜边长( )A.4 cm B.8 cm C.10 cm D.12 cm15.如图3,以三角形三边为直径向外作三个半圆,若较小的两个半圆面积之和等于较大的半圆面积,则这个三角形是( )A.锐角三角形 B.直角三角形 C.钝角三角形 D.锐角三角形或钝角三角形三、解答题18、在某山区需要修建一条高速公路,在施工过程中要沿直线AB打通一条隧道,动工前,应先测隧道BC的长,现测得∠ABD=150°,∠D=60°,BD=10 km,请根据上述数据,求出隧道BC的长。
19、如图,要从电线杆离地面5米处向地面拉一条13米长的拉线,求地面拉线固定点A到电线杆底部B的距离20、如图,校园内有两棵树,相距BC=12米,一棵树高AB为13米,另一棵树高CD为8米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞多远 21、如图,一架2.5米长的梯子AB斜靠在竖直的墙AC上,这时梯子底部B到墙底端的距离为0.7米,考虑爬梯子的稳定性,现要将梯子顶部A沿墙下移0.4米到A′处,问梯子底部B将外移多少米? 2、用勾股定理解古代趣题一、古代趣题1、12世纪印度著名数学家婆什迦罗给出了一个歌谣式的问题:波平如镜一湖面,3尺高处出红莲亭亭多姿湖中立,突遭狂风吹一边离开原处6尺远,花贴湖面像睡莲请君动脑想一想,湖水在此深若干尺?2、《九章算术》中的“折竹抵地”问题上:今有竹高一丈,末折抵地,去本四尺。
问折者高几何?意思是:一根竹子,原高一丈,一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部4尺远问折断后的竹子有多高?3、苍鹰与蛇的问题:树根下有一蛇洞,树高15米,树顶有一只苍鹰,它看见一条蛇迅速向洞口爬去,与洞口的距离还有三倍树高时,鹰向蛇直扑过去如果鹰、蛇的速度相等,鹰扑击蛇的路线是直线段,请说出,鹰向何处扑击才能恰好抓住蛇?4、有一棵古树直立在地上,树高2丈,粗3尺,有一根藤条从根处缠绕而上,缠绕5周到达树顶,请问这根藤条有多长?(注:古树可以看成圆柱体;树粗3尺指的是圆柱底面周长为3尺1丈=10尺)二、最短距离问题5、如图,有一个底面半径为6cm,高为24cm的圆柱,在圆柱下底面的点A有一只蚂蚁,它想吃到上底面上与点A相对的点B处的食物后再返回到A点处休息,请问它需爬行的最短路程约是多少?(π取整数3) 6、有一个长宽高分别为2cm,1cm,3cm的长方体,如图,有一只小蚂蚁想从点A爬到点C1处,请你帮它设计爬行的最短路线,并说明理由 7、一个零件的形状如图所示,工人师傅按规定做得AB=3,BC=4,AC=5,CD=12,AD=13,假如这是一块钢板,你能帮工人师傅计算一下这块钢板的面积吗? 8、若△ABC的三边长为a、b、c,根据下列条件判断△ABC的形状。
1)a2+b2+c2+200=12a+16b+20c(2) a3-a2b+ab2-ac2+bc2-b3=0第二章 实数1、平方根一、选择题1、下列各式中,正确的是( )A.-=-(-7)=7 B.=1 C.=2+=2 D.=±0.52、下列说法正确的是( )A.5是25的算术平方根 B.±4是16的算术平方根C.-6是(-6)2的算术平方根 D.0.01是0.1的算术平方根3、的算术平方根是( )A.±6 B.6 C.± D.4、一个正偶数的算术平方根是m,则和这个正偶数相邻的下一个正偶数的算术平方根是( )A.m+2 B.m+ C. D.5、当1<x<4时,化简-结果是( )A.-3 B.3 C.2x-5 D.56、下列各数中没有平方根的数是( )A.-(-2)3 B.3-3 C.a0 D.-(a2+1)7、下列结果错误的个数是( )①(-2)2的算术平方根是-2 ②的算术平方根是4 ③12的算术平方根是 ④(-π)2的算术平方根是±πA.1 B.2 C.3 D.48、若正方形的边长是a,面积为S,那么( )A. S的平方根是a B. a是S的算术平方根 C. a=± D. S= 9、7-2的算术平方根是( )A. B.7 C. D.410、的值是( )A.7 B.-1 C.1 D.-7二、填空题11、若x2=(-7)2,则x=__________。
12.若=2,则2x+5的平方根是__________13、若有意义,则a能取的最小整数为____________14.已知0≤x≤3,化简+=__________ 15.若|x-2|+=0,则x·y=______16、如果a<0,那么=________,()2=________三、解答题17、计算题(1) (2)- (3) (4)18、已知某数有两个平方根分别是a+3与2a-15,求这个数19、|2a-5|与互为相反数,求ab的值20、甲乙二人计算a+的值,当a=3的时候,得到下面不同的答案:甲的解答:a+=a+=a+1-a=1;乙的解答:a+=a+=a+a-1=2a-1=5哪一个解答是正确的?错误的解答错在哪里?为什么?2、立方根一、选择题1、如果a是(-3)2的平方根,那么等于( )A.-3 B.- C.±3 D.或-2、若x<0,则等于( )A.x B.2x C.0 D.-2x3、若a2=(-5)2,b3=(-5)3,则a+b的值为( )A.0 B.±10 C.0或10 D.0或-104、如右图:数轴上点A表示的数为x,则x2-13的立方根是( )A.-13 B.--13 C.2 D.-25、如果2(x-2)3=6,则x等于( )A. B. C.或 D.以上答案都不对6、在下列各式中: = =0.1, =0.1,-=-27,其中正确个数是( )A.1 B.2 C.3 D.47、若m<0,则m的立方根是( )A. B.- C.± D. 8、如果是6-x的三次方根,那么( )A.x<6 B.x=6 C.x≤6 D.x是任意数9、若规定误差小于1,那么的估算值为( )A.3 B.7 C.8 D.7或810、立方根等于本身的数是( )A.-1 B.0 C.±1 D.±1或0二、填空题11、若x<0,则=______;=________。
12、若x=()3,则=__________ 若a<0,则()-3=___________13、a是的整数部分,b是的整数部分,则a2+b2=____________14、大于-且小于的整数有________________三、解答题15、估算下列数的大小:(1)(误差小于1) (2)(误差小于0.1)16、通过估算,比较下列数的大小.(1)和 (2)与 17、下列估算结果是否正确为什么(1)≈6.8; (2)≈20.18、(1)要造一个面积为的圆形花坛,它的半径应是多少(π取3.14,结果保留2个有效数字)?(2)要造一个高与底面圆直径相等的圆柱形容器,并使它的容积为这个容器的底面圆半径是多少(π取3.14,结果保留2个有效数字)?3、实数的有关运算一、选择题1、下列说法中,正确的是( )A.任何实数的平方都是正数 B.正数的倒数必小于这个正数C.绝对值等于它本身的数必是非负数 D.零除以任何一个实数都等于零2、若m是一个整数的平方数,那么和m相邻且比它大的那个平方数是( )A.m+2+1 B.m+1 C.m2+1 D.以上都不对3、若a,b为实数,下列命题中正确的是( )A.若a>b,则a2>b2 B.若a>|b|,则a2>b2C.若|a|>b,则a2>b2 D.若a>0,a>b,则a2>b24、全体小数所在的集合是( )A.分数集合 B.有理数集合 C.实数集合 D.无理数集合5、无理数4的值在( )A.8和9之间 B.9和10之间 C.10和11之间 D.11和12之间6、下列说法正确的是( )A.无限小数都是无理数 B.带根号的数都是无理数C.开方开不尽的数是无理数 D.π是无理数,故无理数也可能是有限小数7、已知实数a、b、c在数轴上的位置如图所示,化简|a+b|-|c-b|的结果是( )A.a+c B.-a-2b+c C.a+2b-c D.-a-c8、已知a-b=2-1,ab=,则(a+1)(b-1)的值为( )A. B.3 C.2 D.二、填空题9.下列各数中:-,,3.14159,π,,-,0,0.,,,2.121122111222…其中有理数有___________________________ ;无理数有_________________________________。
10.在实数中绝对值最小的数是________;在负整数中绝对值最小的数是________11.实数a,b在数轴上所对应的点的位置如图所示,则2a___________0,a+b__________0,-|b-a|________0,化简|2a|-|a+b|=________ 12.已知:=102,=0.102,则x=________13.+|2x-y-5|=0,则x=________,y=________三、解答题:14、计算下列各小题(1) (2)3(3). (4) (5); (6) .15、观察下列各式: ……请你将猜想到的规律用含自然数n(n≥1)的代数式表示出来是______________________________________________16、在△ABC中,∠C=90°,∠B=30°,AD是∠BAC的平分线,已知AB=4,求AD17、已知y=+18,求代数式的值。
第三章 图形的平移与旋转一、选择题1、下列现象是数学中的平移的是( )A.冰化成水 B.电梯由一楼升到二楼 C.导弹击中目标后爆炸 D.卫星绕地球运动2、将图形平移,下列结论错误的是( )A.对应线段相等 B.对应角相等 C.对应点所连的线段互相平分 D.对应点所连的线段相等3、将△ABC平移到△DEF,不能确定△DEF位置的是( )A.已知平移的方向 B.已知点A的对应点D的位置C.已知边AB的对应边DE的位置 D.已知∠A的对应角∠D的位置4、平面图形的旋转一般情况下改变图形的( )A.位置 B.大小 C.形状 D.性质5、9点钟时,钟表的时针和分针之间的夹角是( )A.30° B.45° C.60° D.90°6、将平行四边形ABCD旋转到平行四边形的位置,下列结论错误的是( )A.AB= B.AB∥ C.∠A=∠A′ D.△ABC≌△二、填空题7、火车在笔直的铁路上行驶,可以看作是数学中的_______现象。
8、线段AB沿和它垂直的方向平移到,则线段AB和线段的关系是______9、把△ABC平移到△DEF的位置,则△DEF和△ABC的关系是_______10、□ABCD平移到四边形的位置,则四边形是_________四边形11、平移只改变图形的_______,而不改变图形的_______12、钟表上的指针随时间的变化而移动,这可以看作是数学上的_______13、菱形ABCD绕点O沿逆时针方向旋转到四边形,则四边形是__________14、△ABC绕一点旋转到△,则△ABC和△的关系是_______15、钟表的时针经过20分钟,旋转了_______度16、图形的旋转只改变图形的_______,而不改变图形的_______三、解答题17、如图,字母L上的点A平移到了点B,你能作出平移后的字母L吗?18、经过平移,△ABC的边AB平移到了,作出平移后的三角形,你能给出几种作法?你认为哪种方法更简便?请用其中一种方法作出平移后的三角形19、如图,菱形是菱形ABCD绕点O顺时针旋转90°后得到的,你能作出旋转前的图形吗? 20、将一个等腰直角三角形ABC(如图∠A是直角)绕着它的一个顶点B逆时针方向旋转,分别作出旋转下列角度后的图形。
1)45° (2)90° (3)180°21、将下面的图案绕点O顺时针方向旋转90度,作出旋转后的图形第四章 四边形性质探索1、平行四边形的性质和判别一、选择题1、□ABCD中,∠A比∠B大20°,则∠C的度数为( )A.60° B.80° C.100° D.120°2、以A、B、C三点为平行四边形的三个顶点,作形状不同的平行四边形,一共可以作( )A.0个或3个 B.2个 C.3个 D.4个3、如图1,在□ABCD中,EF∥AB,GH∥AD,EF与GH交于点O,则该图中的平行四边形的个数共有( )A.7个 B.8个 C.9个 D.11个4、在□ABCD中,若AB=5 cm,BC=7 cm,则这个平行四边形的周长为( )A.12 cm B.35 cm C.24 cm D.48 cm5、能够判定一个四边形是平行四边形的条件是( )A.一组对角相等 B.两条对角线互相平分C.两条对角线互相垂直 D.一对邻角的和为180°6、四边形ABCD中,AD∥BC,要判定ABCD是平行四边形还需满足( )A.∠A+∠C=180° B.∠B+∠D=180° C.∠A+∠B=180° D.∠A+∠D=180°7、顺次连接一个四边形各边中点所得的四边形必定是( )A.平行四边形 B.矩形 C.菱形 D.正方形8、一个四边形的三个内角的度数依次如下,其中是平行四边形的是( )A.88°,108°,88° B.88°,104°,108° C.88°,92°,92° D.88°,92°,88°图1 图2 图3二、填空题1、平行四边形的对角线长分别为10、16,则它的边长x的取值范围是___________。
2、如图2,E、F分别是平行四边形ABCD的边AD与BC的三分之一点,则四边形AECF是______________3、□ABCD中,AB∶BC=1∶2,周长为24 cm,则AB=___________ cm,AD=___________ cm4、如图3,四边形ABCD,ABDE都是平行四边形,且平行四边形ABCD的面积是8cm2,那么四边形ABCE的面积是___________cm2三、解答题1、如图,已知□ABCD的周长为60厘米,对角线交于O,△BOC的周长比△AOB的周长少8厘米,求AB、BC的长2、如图,四边形ABCD是平行四边形,且∠A=120°,AB=3,AD=51) 求∠ADC、∠ABC的度数;(2) 求BC、CD的长度3、如图,已知E、F是平行四边形ABCD对角线AC上的两点,并且AE=CF请说明四边形BFDE是平行四边形4、已知:如图,四边形ABCD是平行四边形,延长BA到E,延长DC到F,使BE=DF,AF交BC于H,CE交AD于G,请说明△AGE≌△CHF5、在四边形ABCD中,AD∥BC,对角线AC、BD交于O,EF过O交AD于E,交BC于F,且OE=OF,请说明四边形ABCD是平行四边形。
2、菱形的性质和判别一、选择题1、下列说法中,正确的是( )A.对角线互相垂直且相等的四边形是菱形 B.对角线互相垂直且平分的四边形是菱形C.对角线互相平分且相等的四边形是菱形 D.对角线相等的四边形是菱形2、菱形的周长为16 cm,相邻两角之比为2∶1,那么菱形对边间的距离是( )A.6 cm B. 2cm C.3 cm D.2 cm3、在菱形ABCD中,AE⊥BC于点E,AF⊥CD于点F,且E、F分别为BC、CD的中点,(如图1)则∠EAF等于( )A.75° B.60° C.45° D.30° 图1 图24、已知:如图2,菱形ABCD中,AE⊥BC于E,若S菱形ABCD=24,且AE=6,则菱形的边长为( )A.12 B.8 C.4 D.25、菱形的边长是2 cm,一条对角线的长是2cm,则另一条对角线的长是( )A.4 cm B. cm C.2 cm D.2 cm6、菱形具有而一般平行四边形不具有的性质是( )A.对角相等 B.对边相等 C.对角线互相垂直 D.对角线相等7、菱形的周长为16,两邻角度数的比为1∶2,此菱形的面积为( )A.4 B.8 C.10 D.12二、填空题1、菱形的一边与两条对角线所构成两角之比为5∶4,则它的各内角度数为_______。
2、若一条对角线平分平行四边形的一组对角,且一边长为a时,其他三边长为______;周长为______3、菱形ABCD中,AC、BD相交于O点,若∠OBC=∠BAC,则菱形的四个内角的度数为 ___________4、若菱形的两条对角线的比为3∶4,且周长为20 cm,则它的较短的对角线等于_________cm,它的面积等于________ cm25、菱形的一个内角为120°,平分这个内角的对角线长为10 cm,菱形的周长为______ cm6、如图,已知菱形ABCD的周长为16,∠ABC=60º,则菱形的面积为___________三、解答题1、已知:如图,菱形ABCD的周长为8cm,∠ABC:∠BAD=2:1,对角线AC、BD相交于点O,求AC的长及菱形的面积2、如图,AD是△ABC的角平分线.DE∥AC交AB于E,DF∥AB交AC于F,四边形AEDF是菱形吗?说明你的理由3、正方形ABCD中,AE=CF,则四边形BEDF是菱形吗?请说明理由 4、已知:在△ABC中,AB=AC=4,M为底边BC上任意一点,过点M分别作AB、AC的平行线交AC于P,交AB于Q. (1)求四边形AQMP的周长;(2)M位于BC的什么位置时,四边形AQMP为菱形?说明你的理由。
3、矩形的性质和判别一、选择题1、两条平行线被第三条直线所截,两组内错角的平分线相交所成的四边形是( )A.一般平行四边形 B.菱形 C.矩形 D.正方形2、在矩形ABCD的边AB上有一点E,且CE=DE,若AB=2AD,则∠ADE等于( )A.45° B.30° C.60° D.75°3、矩形的一内角平分线把矩形的一条边分成3和5两部分,则该矩形的周长是( )A.16 B.22 C.26 D.22或264、如图1,△BDC′是将矩形纸片ABCD沿对角线BD折叠得到的,图中(包括实线、虚线在内)共有全等三角形( )A.2对 B.3对 C.4对 D.5对5、已知E是矩形ABCD的边BC的中点,那么S△AED=________S矩形ABCD( )A. B. C. D. 图16、如图2,矩形ABCD中,若AB=4,BC=9,E、F分别为BC,DA上的点,则S四边形AECF等于( )A.12 B.24 C.36 D.48 图27、如图3,周长为68的矩形ABCD被分成7个全等的矩形,则矩形ABCD 的面积为( ) A.98 B.196 C.280 D.284 图3 图4 图58、在下列图形中,沿着虚线将长方形剪成两部分,那么由这两部分既能拼成平行四边形,又能拼成三角形和梯形的是( )二、填空题1、已知矩形ABCD的对角线相交于O,对角线长是8 cm,∠AOD=60°,则AD=________;AB=_______。
2、直角三角形中,两条直角边长分别是6和8,则斜边中线长是_______3、矩形的两条对角线所夹的锐角为60°,一条对角线与短边的和为15,则对角线长是_______,短边的长是_______4、在矩形ABCD中,如图4,AC、BD相交于O,AE⊥BD于E,如果∠DAE∶∠BAE=2∶1,则∠EAC=________5、如图5,矩形ABCD的周长是56 cm,它的两条对角线相交于O,△AOB的周长比△BOC的周长少4 cm,则AB=_______,BC=_______三、解答题1、如图,矩形ABCD的两对角线相交于点O,∠AOD=120°,AB=4cm,(1)判定△AOB的形状;(2)求对角线的长;(3)求距形的面积 2、如图,矩形ABCD的对角线AC、BD相交于点O,E、F、G、H分别是OA、OB、OC、OD的中点,顺次连结E、F、G、H所得的四边形EFGH是矩形吗?说明理由3、如图,在矩形ABCD中,AB=6,BC=8将矩形ABCD沿CE折叠后,使点D恰好落在对角线AC上的点F处1)求EF的长;(2)求梯形ABCE的面积4、如图,△ABC中,点O是AC边上一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于E,交∠BCA的外角平分线于点F。
1) 请说明EO=FO;(2) 当点O运动到何处时,四边形AECF是矩形?并证明你的结论4、正方形的性质和判别一、选择题1、在四边形ABCD中,O是对角线的交点,则下列条件能判断四边形ABCD是正方形的是( ) A、AC=BD, B、AD//BC,∠A=∠C C、OA=OB=OC=OD,AC⊥BD D、OA=OC,OB=OD,AB=CB2、在正方形ABCD中,点E是BC边的中点,若DE=5,则四边形ABED的面积为( )A、10 B、15 C、20 D、253、菱形、矩形、正方形都具有的性质是( ) A.、对角线相等且互相平分 B、对角线相等且互相垂直平分 C、对角线互相平分 D、四条边相等,四个角相等4、如图1,在正方形ABCD中作等边△AEF,则∠AFB的度数为( )A、40° B、75° C、50° D、55° 图15、在正方形ABCD中,AB=12 cm,对角线AC、BD相交于O,则△ABO的周长是( )A、12+12 B、12+6 C、12+ D、24+6二、填空题1、正方形的边长为a,当边长增加1时,其面积增加了 。
2、如图2,点E是正方形ABCD的边BC延长线上的一点,且CE=AC,若AE交CD于点F,则∠E= °;∠AFC= °3、P为正方形ABCD内部一点,且PA=PD=AD,则△PBC为_________4、如图3,正方形ABCD中,AC=10,P是AB上任意一点,PE⊥AC于E,PF⊥BD于F,则PE+PF= 可以用一句话概括:正方形边上的任意一点到两对角线的距离之和等于 5、设E、F是正方形ABCD的边BC、CD的中点,若AB=4,则△AEF的面积是 EPDCBAF 图2 图3 三、解答题1、如图,已知正方形ABCD的对角线AC的边长为,求它的边长和面积。
2、如图,在△ABC中,∠ABC=90°,BD平分∠ABC,DE⊥BC,DF⊥AB,垂足为E、F,试说明四边形BEDF是正方形3、正方形ABCD中,E、F、G、H分别是各边的中点,试说明四边形EFGH的形状4、如图,在正方形ABCD中,E是对角线AC上一点,EF⊥BC于F,EG⊥CD于G1)四边形EFCG是正方形吗?请说明理由;(2)如果AC=6cm,AE=2EC,求四边形EFCG的面积5、如图,正方形ABCD,AB=4,M为AB的中点,ED=3AE,(1)求ME的长;(2)△EMC是直角三角形吗?为什么?5、等腰梯形的性质和判别一、选择题1、下列说法正确的是( )A.、梯形的两条对角线相等 B、有两个内角相等的梯形是等腰梯形C.、有两条边相等的梯形是等腰梯形; D、两腰相等的梯形一定是等腰梯形2、四边形四个内角度数之比为2:2:1:3,则此四边形是( )A. 任意四边形 B. 任意梯形 C. 等腰梯形 D. 直角梯形3、梯形的上底长为6cm,过上底一个顶点引一腰的平行线,交下底所得的三角形的周长是19cm,那么这个梯形的周长为( ) A. 31cm B. 25cm C. 19cm D. 28cm4、等腰梯形两底之差等于一腰长,则腰与上底的夹角为( ) A. 60° B. 120° C. 135° D. 150°5、梯形ABCD中,AD∥BC,设AC,BD交于O点,则图中共有( )对面积相等的三角形.A.2 B.3 C.4 D.56、下列四边形中,两条对角线一定不相等的是( )A.正方形 B.矩形 C.等腰梯形 D.直角梯形7、下列说法中,正确的是( )。
A.有一组对边平行,另一组对边相等的图形是等腰梯形 B.有一组对角互补的梯形是等腰梯形 C.有一组邻角相等的四边形是等腰梯形 D.有两组邻角分别相等的四边形是等腰梯形二、填空题1、等腰梯形上底的长与腰长相等,而一条对角线与一腰垂直,则梯形上底角的度数是________2、以线段a=16、b=13为梯形的两底,以c=10为一腰,则另一腰长d的范围是________3、直角梯形的斜腰长为12cm,这条腰和一底所成的角为30°,则另一腰是________4、等腰梯形的腰与上底相等且等于下底的一半,则该梯形对角线与下底的夹角为________5、直角梯形的一腰与底边夹角为60°,此腰与上底的长都是8cm,则梯形的周长是________6、梯形ABCD中,AD∥BC,若∠B=60°,AC⊥AB,那么∠DAC=___________三、解答题1、如图,等腰梯形ABCD中,AD∥BC,AB=CD=12 cm,上底AD=15 cm,∠BAD=120°,求BC的长2、如图,梯形ABCD中,AB∥CD,M是DC的中点,且AM=BM,那么,梯形ABCD是等腰梯形吗?说说你的理由3、如图,梯形ABCD中,AB∥DC,E是BC的中点,AE、DC的延长线相交于点F,连结AC、BF.(1) 求证:AB=CF;(2) 四边形ABFC是什么四边形,并说明你的理由。
4、如图,等腰梯形ABCD中,AD∥BC,AB=DC,AC⊥BD,过D点作DE∥AC交BC的延长线于E点1)请说明四边形ACED是平行四边形;(2)若AD=3,BC=7,求梯形ABCD的面积 5、如图,△ABC中,,BD、CE分别为、的平分线,请说明四边形EBCD为等腰梯形6、多边形的内角和与外角和及中心对称图形一、选择题1.从六边形的一个顶点向其它顶点引线段,则把这个六边形分成了( )个三角形A.3 B.4 C.5 D.62.如果一个正多边形的一个内角是135°,则这个正多边形是( )A.正五边形 B.正六边形 C.正八边形 D.正十边形3.如果一个多边形的每个内角都相等,且内角和为1440°,则这个多边形的外角是( )A.30° B.36° C.40° D.45°4.四边形的四个内角可以都是( )A.锐角 B.直角 C.钝角 D.不能确定5.下列语句正确的是( )A.线段绕着它的中点旋转180°后与原线段重合,那么线段是中心对称图形B.正三角形绕着它三边中线的交点旋转120°后与原图形重合,那么正三角形是中心对称图形C.正方形绕着它的对角线交点旋转90°后与原图形重合,则正方形是中心对称图形D.正五角星绕着它的中心旋转72°后与原图形重合,则正五角星是中心对称图形6.下列图形中是中心对称图形,而不是轴对称图形的是( )A.等边三角形 B.平行四边形 C.矩形 D.菱形7.在平行四边形、菱形、矩形、正方形、圆中,既是中心对称图形又是轴对称图形的图形个数为( )A.1 B.2 C.3 D.48.菱形、矩形、正方形既是中心对称图形,又是轴对称图形,它们的对称轴的条数依次是( )A.1,1,1 B.2,2,2 C.2,2,4 D.4,2,49.如果一个图形有两条互相垂直的对称轴,那么这个图形( )A.只能是轴对称图形 B.一定是轴对称图形,但无法判别是中心对称图形C.不可能是中心对称图形 D.一定是轴对称图形,也一定是中心对称图形10.多边形的每个内角都等于150°,则从此多边形的一个顶点出发可引的对角线有( )A.8条 B.9条 C.10条 D.11条二、填空题1.若一个四边形的四个内角的度数比为1∶3∶4∶2,则四个内角的度数分别为_______。
2.一个多边形的内角和等于它的外角和的4倍,那么这个多边形是______边形3.若多边形的每一个外角都是15°,则这个多边形的边数是_______4.若一个n边形的内角都相等,且内角的度数与和它相邻的外角的度数比为3∶1,那么,这个多边形的边数为________5.一个正方形绕着它的中心至少旋转________度,能够和原图形重合6.中心对称图形的对应点连线经过_______,并且被_______平分7.中心对称图形中的不在同一直线上的两条对应线段的关系是__________8.已知六边形ABCDEF是中心对称图形,AB=1,BC=2,CD=3,那么EF=_______三、解答题1、在五边形ABCDE中,若∠A=∠D=90°,∠B∶∠C∶∠E=3∶8∶7,求∠B、∠C、∠E的度数2、如图,求∠A+∠B+∠C+∠D+∠E+∠F的度数3、已知六边形ABCDEF是以O为中心的中心对称图形(如图),画出六边形ABCDEF的全部图形,并指出所有的对应点和对应线段 4.作出与已知△ABC关于顶点A成中心对称图形的△,你能说明四边形是平行四边形吗? 5.如图,线段AC、BD相交于点O,且AB∥CD,AB=CD,此图形是中心对称图形吗?试说明你的理由。
第五章 位置的确定一、选择题1、下列语句,其中正确的有( )①点(3,2)与(2,3)是同一个点 ②点(0,-2)在x轴上 ③点(0,0)是坐标原点A.0个 B.1个 C.2个 D.3个2、已知a>0,b<0,那么点P(a,b)在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限3、已知点M在第三象限,它到x轴的距离为3,到y轴的距离为2,则M点的坐标为( )A.(3,2) B.(-3,-2) C.(3,-2) D.(-2,-3)4、点P(-3,5)关于x轴的对称点P’的坐标是( )A、(3,5) B、(5,-3) C、(3,-5) D、(-3,-5)5、已知点A(3,2),AC⊥x轴,垂足为C,则C点的坐标为( )A、(0,0) B、(0,2) C、(3,0) D、(0,3)6、点P(-3,0)到y轴的距离是( )A、3 B、4 C、-3 D、07、点M(x,y)的坐标满足xy=0,那么M点( )A、在原点上 B、在x轴上 C、在y轴上 D、在坐标轴上8、将△ABC各顶点的纵坐标加-3,连结这三点所成的三角形是由△ABC( )A、向上平移3个单位 B、向下平移3个单位 C、向左平移3个单位 D、向右平移3个单位9、已知点P(3+m,2n)与点Q( 2m−3,2n+1),且直线PQ//y轴,则m、n的值为( )A.m=−6,n为任意数 B.m=−2,n=0 C.m=6,n为任意数 D.m=2,n=010、给出下列四个命题,其中真命题的个数是( )①坐标平面内的点与有序实数对一一对应.②若a>0,b不大于0,则P(−a,b)在第三象限内.③在x轴上的点纵坐标都为0. ④当m≠0时,点P(m2,−m)在第四象限内.A、1; B、2; C、3 D、4二、填空题1、已知点A(3,b)在第一象限,那么点B(3,-b)在第___________象限。
2、点P坐标(3,4)关于x轴对称的点坐标为______,点Q(-2,1)关于原点对称的点坐标为______3、已知x轴上的点P到y轴的距离为3,则点P的坐标为___________4、已知点A(2,y)与点B(x,-3)关于y轴对称,则xy=__________5、某十字路口有一环岛,甲车位于环岛正东方向5km,乙车位于环岛正北方向7km,甲、乙两车以相同的速度向环岛方向同时出发,当甲车到环岛的正西方向1km时,乙车位于环岛的_________处6、在平面直角坐标系,点P(−3,a2+1)一定在第_______象限三、解答题1、已知点A(a-1,5)和点B(2,b-1)关于x轴对称,求的值2、已知正方形ABCD,边长为1cm,写出(1)和(2)中的A、B、C、D点的坐标3、已知点A(a,2)、B(-3,b),根据下列条件求出a、b的值1)A、B两点关于x轴对称; (2)A、B两点关于y轴对称;(3)A、B两点关于原点对称; (4)AB∥y轴;(5)A、B两点在第二、四象限两条坐标轴角平分线上;(6)点A在第一象限的角平分线上,B到x轴的距离是4。
4、如图,Rt△ABO的直角顶点在原点,OA=6,AB=10,∠AOx=30°,求A、B两点的坐标,并求△ABO的面积第六章 一次函数1、确定一次函数的表达式一、选择题1、已知点P(1,m)在正比例函数y=2x的图象上,那么P点的坐标是( )A.(1,2) B.(-1,-2) C.(1,-2) D.(-1,2)2、若直线y=kx+b经过A(1,0),B(0,1),则( )A.k=-1,b=-1 B.k=1,b=1C.k=1,b=-1 D.k=-1,b=13、如果一个正比例函数的图象经过点A(3,-1),那么这个正比例函数的解析式为( )A.y=3x B.y=-3x C.y=x D.y=-x4、函数y=3x-6和y=-x+4的图象交于一点,这一点的坐标是( )A.(-,-) B.(,) C.(,) D.(-2,3)5、直线y=kx+b的图象如右图所示,则( )A.k=-,b=-2 B.k=,b=-2 C.k=-,b=-2 D.k=,b=-26、点(1,m)、(2,n)在函数y=-x+1的图象上,则m、n的大小关系是( ).A.m>n B.m<n 。