机械设计基础(第五版)课后习题答案(完整版)杨可竺、程光蕴、李仲生主编1-1至1-4解 机构运动简图如下图所示 图 1.11 题1-1解图 图1.12 题1-2解图 图1.13 题1-3解图 图1.14 题1-4解图 1-5 解 1-6 解 1-7 解 1-8 解 1-9 解 1-10 解 1-11 解 1-12 解 1-13解 该导杆机构的全部瞬心如图所示,构件 1、3的角速比为: 1-14解 该正切机构的全部瞬心如图所示,构件 3的速度为: ,方向垂直向上 1-15解 要求轮 1与轮2的角速度之比,首先确定轮1、轮2和机架4三个构件的三个瞬心,即 , 和 ,如图所示则: ,轮2与轮1的转向相反 1-16解 ( 1)图a中的构件组合的自由度为: 自由度为零,为一刚性桁架,所以构件之间不能产生相对运动 ( 2)图b中的 CD 杆是虚约束,去掉与否不影响机构的运动故图 b中机构的自由度为: 所以构件之间能产生相对运动题 2-1答 : a ) ,且最短杆为机架,因此是双曲柄机构。
b ) ,且最短杆的邻边为机架,因此是曲柄摇杆机构 c ) ,不满足杆长条件,因此是双摇杆机构 d ) ,且最短杆的对边为机架,因此是双摇杆机构 题 2-2解 : 要想成为转动导杆机构,则要求 与 均为周转副 ( 1 )当 为周转副时,要求 能通过两次与机架共线的位置 见图 2-15 中位置 和 在 中,直角边小于斜边,故有: (极限情况取等号); 在 中,直角边小于斜边,故有: (极限情况取等号) 综合这二者,要求 即可 ( 2 )当 为周转副时,要求 能通过两次与机架共线的位置 见图 2-15 中位置 和 在位置 时,从线段 来看,要能绕过 点要求: (极限情况取等号); 在位置 时,因为导杆 是无限长的,故没有过多条件限制 ( 3 )综合( 1 )、( 2 )两点可知,图示偏置导杆机构成为转动导杆机构的条件是: 题 2-3 见图 2.16 图 2.16 题 2-4解 : ( 1 )由公式 ,并带入已知数据列方程有: 因此空回行程所需时间 ; ( 2 )因为曲柄空回行程用时 , 转过的角度为 , 因此其转速为: 转 / 分钟 题 2-5 解 : ( 1 )由题意踏板 在水平位置上下摆动 ,就是曲柄摇杆机构中摇杆的极限位置,此时曲柄与连杆处于两次共线位置。
取适当比例 图 尺,作出两次极限位置 和 (见图2.17 )由图量得: , 解得 : 由已知和上步求解可知: , , , ( 2 ) 因最小传动角位于曲柄与机架两次共线位置,因此取 和 代入公式( 2-3 )计算可得: 或: 代入公式( 2-3 )′,可知 题 2-6解: 因为本题属于设计题,只要步骤正确,答案不唯一这里给出基本的作图步骤,不给出具体数值答案作图步骤如下(见图 2.18 ): ( 1 )求 , ;并确定比例尺 ( 2 )作 , 即摇杆的两极限位置) ( 3 )以 为底作直角三角形 , , ( 4 )作 的外接圆,在圆上取点 即可 在图上量取 , 和机架长度 则曲柄长度 ,摇杆长度 在得到具体各杆数据之后,代入公式 ( 2 — 3 )和 ( 2-3 )′求最小传动角 ,能满足 即可 图 2.18 题 2-7图 2.19 解 : 作图步骤如下 (见图 2.19 ) : ( 1 )求 , ;并确定比例尺 ( 2 )作 ,顶角 , ( 3 )作 的外接圆,则圆周上任一点都可能成为曲柄中心。
( 4 )作一水平线,于 相距 ,交圆周于 点 ( 5 )由图量得 , 解得 : 曲柄长度: 连杆长度: 题 2-8 解 : 见图 2.20 ,作图步骤如下: ( 1 ) ( 2 )取 ,选定 ,作 和 , ( 3 )定另一机架位置: 角平 分线, ( 4 ) , 杆即是曲柄,由图量得 曲柄长度: 题 2-9解: 见图 2.21 ,作图步骤如下: ( 1 )求 , ,由此可知该机构没有急回特性 ( 2 )选定比例尺 ,作 , 即摇杆的两极限位置) ( 3 )做 , 与 交于 点 ( 4 )在图上量取 , 和机架长度 曲柄长度: 连杆长度: 题 2-10解 : 见图 2.22 这是已知两个活动铰链两对位置设计四杆机构,可以用圆心法连接 , ,作图 2.22 的中垂线与 交于点然后连接 , ,作 的中垂线与 交于 点图中画出了一个位置 从图中量取各杆的长度,得到:,, 题 2-11解 : ( 1 )以 为中心,设连架杆长度为 ,根据 作出 ,, ( 2 )取连杆长度 ,以 , , 为圆心,作弧 ( 3 )另作以 点为中心, 、 , 的另一连架杆的几个位置,并作出不同半径的许多同心圆弧。
( 4 )进行试凑,最后得到结果如下:, , , 机构运动简图如图 2.23 题 2-12解 : 将已知条件代入公式( 2-10 )可得到方程组: 联立求解得到: , , 将该解代入公式( 2-8 )求解得到: , , , 又因为实际 ,因此每个杆件应放大的比例尺为: ,故每个杆件的实际长度是: , , , 题 2-13证明 : 见图 2.25 在 上任取一点 ,下面求证 点的运动轨迹为一椭圆见图可知 点将 分为两部分,其中 , 又由图可知 , ,二式平方相加得 可见 点的运动轨迹为一椭圆3-1解 图 3.10 题3-1解图如图 3.10所示,以O为圆心作圆并与导路相切,此即为偏距圆过B点作偏距圆的下切线,此线为凸轮与从动件在B点接触时,导路的方向线推程运动角 如图所示 3-2解图 3.12 题3-2解图如图 3.12所示,以O为圆心作圆并与导路相切,此即为偏距圆过D点作偏距圆的下切线,此线为凸轮与从动件在D点接触时,导路的方向线凸轮与从动件在D点接触时的压力角 如图所示 3-3解 :从动件在推程及回程段运动规律的位移、速度以及加速度方程分别为:( 1)推程: 0°≤ ≤ 150° ( 2)回程:等加速段 0°≤ ≤60 ° 等减速段 60°≤ ≤120 ° 为了计算从动件速度和加速度,设 。
计算各分点的位移、速度以及加速度值如下: 总转角 0° 15° 30° 45° 60° 75° 90° 105° 位移 (mm) 0 0.734 2.865 6.183 10.365 15 19.635 23.817 速度 (mm/s) 0 19.416 36.931 50.832 59.757 62.832 59.757 50.832 加速度( mm/s 2 ) 65.797 62.577 53.231 38.675 20.333 0 -20.333 -38.675 总转角 120° 135° 150° 165° 180° 195° 210° 225° 位移 (mm) 27.135 29.266 30 30 30 29.066 26.250 21.563 速度 (mm/s) 36.932 19.416 0 0 0 -25 -50 -75 加速度( mm/s 2 ) -53.231 -62.577 -65.797 0 -83.333 -83.333 -83.333 -83.333 总转角 240° 255° 270° 285° 300° 315° 330° 345° 位移 (mm) 15 8.438 3.75 0.938 0 0 0 0 速度 (mm/s) -100 -75 -50 -25 0 0 0 0 加速度( mm/s 2 ) -83.333 -83.333 83.333 83.333 83.333 0 0 0 根据上表 作图如下(注:为了图形大小协调,将位移曲线沿纵轴放大了 5倍。
图 3-13 题3-3解图 3-4 解 : 图 3-14 题3-4图 根据 3-3题解作图如图3-15所示根据(3.1)式可知, 取最大,同时s 2 取最小时,凸轮机构的压力角最大从图3-15可知,这点可能在推程段的开始处或在推程的中点处由图量得在推程的开始处凸轮机构的压力角最大,此时 <[ ]=30° 图 3-15 题3-4解图 3-5解 :( 1)计算从动件的位移并对凸轮转角求导 当凸轮转角 在 0≤ ≤ 过程中,从动件按简谐运动规律上升 h=30mm根据教材(3-7)式 可得: 0≤ ≤ 0≤ ≤ 当凸轮转角 在 ≤ ≤ 过程中,从动件远休 S 2 =50 ≤ ≤ ≤ ≤ 当凸轮转角 在 ≤ ≤ 过程中,从动件按等加速度运动规律下降到升程的一半根据教材(3-5)式 可得: ≤ ≤ ≤ ≤ 当凸轮转角 在 ≤ ≤ 过程中,从动件按等减速度运动规律下降到起始位置。
根据教材(3-6)式 可得: ≤ ≤ ≤ ≤ 当凸轮转角 在 ≤ ≤ 过程中,从动件近休 S 2 =50 ≤ ≤ ≤ ≤ ( 2)计算凸轮的理论轮廓和实际轮廓 本题的计算简图及坐标系如图 3-16所示,由图可知,凸轮理论轮廓上B点(即滚子中心)的直角坐标为 图 3-16 式中 由图 3-16可知,凸轮实际轮廓的方程即B ′ 点的坐标方程式为 因为 所以 故 由上述公式可得 理论轮廓曲线和实际轮廓的直角坐标,计算结果如下表,凸轮廓线如图3-17所示 x′ y′ x′ y′ 0° 49.301 8.333 180° -79.223 -8.885 10° 47.421 16.843 190° -76.070 -22.421 20° 44.668 25.185 200° -69.858 -34.840 30° 40.943 33.381 210° -60.965 -45.369 40° 36.089 41.370 220° -49.964 -53.356 50° 29.934 48.985 230° -37.588 -58.312 60° 22.347 55.943 240° -24.684 -59.949 70° 13.284 61.868 250° -12.409 -59.002 80° 2.829 66.326 260° -1.394 -56.566 90° -8.778 68.871 270° 8.392 -53.041 100° -21.139 69.110 280° 17.074 -48.740 110° -33.714 66.760 290° 24.833 -43.870 120° -45.862 61.695 300° 31.867 -38.529 130° -56.895 53.985 310° 38.074 -32.410 140° -66.151 43.904 320° 43.123 -25.306 150° -73.052 31.917 330° 46.862 -17.433 160° -77.484 18.746 340° 49.178 -9.031 170° -79.562 5.007 350° 49.999 -0.354 180° -79.223 -8.885 360° 49.301 8.333 图 3-17 题3-5解图 3-6 解: 图 3-18 题3-6图 从动件在推程及回程段运动规律的角位移方程为: 1.推程: 0°≤ ≤ 150° 2.回程: 0°≤ ≤120 ° 计算各分点的位移值如下: 总转角( °) 0 15 30 45 60 75 90 105 角位移( °) 0 0.367 1.432 3.092 5.182 7.5 9.818 11.908 总转角( °) 120 135 150 165 180 195 210 225 角位移( °) 13.568 14.633 15 15 15 14.429 12.803 0.370 总转角( °) 240 255 270 285 300 315 330 345 角位移( °) 7.5 4.630 2.197 0.571 0 0 0 0 根据上表 作图如下: 图 3-19 题3-6解图 3-7解:从动件在推程及回程段运动规律的位移方程为: 1.推程: 0°≤ ≤ 120° 2.回程: 0°≤ ≤120 ° 计算各分点的位移值如下: 总转角( °)0153045607590105位移( mm)00.7612.9296.1731013.82717.07119.239总转角( °)120135150165180195210225位移( mm)20202019.23917.07113.827106.173总转角( °)240255270285300315330345位移( mm)2.9290.761000000 图 3-20 题3-7解图 4.5课后习题详解 4-1解 分度圆直径 齿顶高 齿根高 顶 隙 中心距 齿顶圆直径 齿根圆直径 基圆直径 齿距 齿厚、齿槽宽 4-2解由 可得模数 分度圆直径 4-3解 由 得 4-4解 分度圆半径 分度圆上渐开线齿廓的曲率半径 分度圆上渐开线齿廓的压力角 基圆半径 基圆上渐开线齿廓的曲率半径为 0; 压力角为 。
齿顶圆半径 齿顶圆上渐开线齿廓的曲率半径 齿顶圆上渐开线齿廓的压力角 4-5解 正常齿制渐开线标准直齿圆柱齿轮的齿根圆直径: 基圆直径 假定 则解 得 故当齿数 时,正常齿制渐开线标准直齿圆柱齿轮的基圆大于齿根圆;齿数 ,基圆小于齿根圆4-6解 中心距 内齿轮分度圆直径 内齿轮齿顶圆直径 内齿轮齿根圆直径 4-7 证明 用齿条刀具加工标准渐开线直齿圆柱齿轮,不发生根切的临界位置是极限点 正好在刀具的顶线上此时有关系: 正常齿制标准齿轮 、 ,代入上式 短齿制标准齿轮 、 ,代入上式 图 4.7 题4-7解图 图 4.8 题4-8图 图4.9 题4-8解图4-8证明 如图所示, 、 两点为卡脚与渐开线齿廓的切点,则线段 即为渐开线的法线根据渐开线的特性:渐开线的法线必与基圆相切,切点为 再根据渐开线的特性:发生线沿基圆滚过的长度,等于基圆上被滚过的弧长,可知: AC 对于任一渐开线齿轮,基圆齿厚与基圆齿距均为定值,卡尺的位置不影响测量结果 4-9解 模数相等、压力角相等的两个齿轮,分度圆齿厚 相等。
但是齿数多的齿轮分度圆直径大,所以基圆直径就大根据渐开线的性质,渐开线的形状取决于基圆的大小,基圆小,则渐开线曲率大,基圆大,则渐开线越趋于平直因此,齿数多的齿轮与齿数少的齿轮相比,齿顶圆齿厚和齿根圆齿厚均为大值 4-10解 切制变位齿轮与切制标准齿轮用同一把刀具,只是刀具的位置不同因此,它们的模数、压力角、齿距均分别与刀具相同,从而变位齿轮与标准齿轮的分度圆直径和基圆直径也相同故参数 、 、、 不变 变位齿轮分度圆不变,但正变位齿轮的齿顶圆和齿根圆增大,且齿厚增大、齿槽宽变窄因此 、、 变大, 变小 啮合角 与节圆直径 是一对齿轮啮合传动的范畴 4-11解 因 螺旋角 端面模数 端面压力角 当量齿数 分度圆直径 齿顶圆直径 齿根圆直径 4-12解 (1)若采用标准直齿圆柱齿轮,则标准中心距应 说明采用标准直齿圆柱齿轮传动时,实际中心距大于标准中心距,齿轮传动有齿侧间隙,传动不连续、传动精度低,产生振动和噪声 2)采用标准斜齿圆柱齿轮传动时,因 螺旋角 分度圆直径 节圆与分度圆重合 , 4-13解 4-14解 分度圆锥角 分度圆直径 齿顶圆直径 齿根圆直径 外锥距 齿顶角、齿根角 顶锥角 根锥角 当量齿数 4-15答: 一对直齿圆柱齿轮正确啮合的条件是:两齿轮的模数和压力角必须分别相等,即 、。
一对斜齿圆柱齿轮正确啮合的条件是:两齿轮的模数和压力角分别相等,螺旋角大小相等、方向相反(外啮合),即 、 、 一对直齿圆锥齿轮正确啮合的条件是:两齿轮的大端模数和压力角分别相等,即 、 5-1解: 蜗轮 2和蜗轮3的转向如图粗箭头所示,即 和 图 5.5 图5.6 5-2解: 这是一个定轴轮系,依题意有: 齿条 6 的线速度和齿轮 5 ′分度圆上的线速度相等;而齿轮 5 ′的转速和齿轮 5 的转速相等,因此有: 通过箭头法判断得到齿轮 5 ′的转向顺时针,齿条 6 方向水平向右 5-3解:秒针到分针的传递路线为: 6→5→4→3,齿轮3上带着分针,齿轮6上带着秒针,因此有: 分针到时针的传递路线为: 9→10→11→12,齿轮9上带着分针,齿轮12上带着时针,因此有: 图 5.7 图5.8 5-4解: 从图上分析这是一个周转轮系,其中齿轮 1、3为中心轮,齿轮2为行星轮,构件 为行星架则有: ∵ ∴ ∴ 当手柄转过 ,即 时,转盘转过的角度 ,方向与手柄方向相同 5-5解: 这是一个周转轮系,其中齿轮 1、3为中心轮,齿轮2、2′为行星轮,构件 为行星架。
则有: ∵ , ∴ ∴ 传动比 为10,构件 与 的转向相同 图 5.9 图5.10 5-6解: 这是一个周转轮系,其中齿轮 1为中心轮,齿轮2为行星轮,构件 为行星架 则有: ∵ , , ∵ ∴ ∴ 5-7解: 这是由四组完全一样的周转轮系组成的轮系,因此只需要计算一组即可取其中一组作分析,齿轮 4、3为中心轮,齿轮2为行星轮,构件1为行星架这里行星轮2是惰轮,因此它的齿数 与传动比大小无关,可以自由选取1) 由图知 (2) 又挖叉固定在齿轮上,要使其始终保持一定的方向应有: (3) 联立( 1)、(2)、(3)式得: 图 5.11 图5.12 5-8解: 这是一个周转轮系,其中齿轮 1、3为中心轮,齿轮2、2′为行星轮, 为行星架 ∵ , ∴ ∴ 与 方向相同 5-9解: 这是一个周转轮系,其中齿轮 1、3为中心轮,齿轮2、2′为行星轮, 为行星架 ∵设齿轮 1方向为正,则 , ∴ ∴ 与 方向相同 图 5.13 图5.14 5-10解: 这是一个混合轮系其中齿轮 1、2、2′3、 组成周转轮系,其中齿轮1、3为中心轮,齿轮2、2′为行星轮, 为行星架。
而齿轮4和行星架 组成定轴轮系 在周转轮系中: (1) 在定轴轮系中: (2) 又因为: (3) 联立( 1)、(2)、(3)式可得: 5-11解: 这是一个混合轮系其中齿轮 4、5、6、7和由齿轮3引出的杆件组成周转轮系,其中齿轮4、7为中心轮,齿轮5、6为行星轮,齿轮3引出的杆件为行星架 而齿轮1、2、3组成定轴轮系在周转轮系中: (1) 在定轴轮系中: (2) 又因为: , 联立( 1)、(2)、(3)式可得: ( 1)当 , 时, , 的转向与齿轮1和4的转向相同 ( 2)当 时, ( 3)当 , 时, , 的转向与齿轮1和4的转向相反 图 5.15 图5.16 5-12解: 这是一个混合轮系其中齿轮 4、5、6和构件 组成周转轮系,其中齿轮4、6为中心轮,齿轮5为行星轮, 是行星架齿轮1、2、3组成定轴轮系 在周转轮系中: (1) 在定轴轮系中: (2) 又因为: , (3) 联立( 1)、(2)、(3)式可得: 即齿轮 1 和构件 的转向相反 5-13解: 这是一个混合轮系齿轮 1、2、3、4组成周转轮系,其中齿轮1、3为中心轮,齿轮2为行星轮,齿轮4是行星架。
齿轮4、5组成定轴轮系 在周转轮系中: , ∴ (1) 在图 5.17中,当车身绕瞬时回转中心 转动时,左右两轮走过的弧长与它们至 点的距离成正比,即:(2) 联立( 1)、(2)两式得到: , (3) 在定轴轮系中: 则当: 时, 代入( 3)式,可知汽车左右轮子的速度分别为 , 5-14解: 这是一个混合轮系齿轮 3、4、4′、5和行星架 组成周转轮系,其中齿轮3、5为中心轮,齿轮4、4′为行星轮齿轮1、2组成定轴轮系 在周转轮系中:(1) 在定轴轮系中: (2) 又因为: , , (3) 依题意,指针 转一圈即 (4) 此时轮子走了一公里,即 (5) 联立( 1)、(2)、(3)、(4)、(5)可求得 图 5.18 图5.19 5-15解: 这个起重机系统可以分解为 3个轮系:由齿轮3′、4组成的定轴轮系;由蜗轮蜗杆1′和5组成的定轴轮系;以及由齿轮1、2、2′、3和构件 组成的周转轮系,其中齿轮1、3是中心轮,齿轮4、2′为行星轮,构件 是行星架 一般工作情况时由于蜗杆 5不动,因此蜗轮也不动,即 (1) 在周转轮系中: (2) 在定轴齿轮轮系中: (3) 又因为: , , (4) 联立式( 1)、(2)、(3)、(4)可解得: 。
当慢速吊重时,电机刹住,即 ,此时是平面定轴轮系,故有: 5-16解: 由几何关系有:又因为相啮合的齿轮模数要相等,因此有上式可以得到: 故行星轮的齿数: 图 5.20 图5.21 5-17解: 欲采用图示的大传动比行星齿轮,则应有下面关系成立: ( 1) (2) (3) 又因为齿轮 1与齿轮3共轴线,设齿轮1、2的模数为 ,齿轮2′、3的模数为 ,则有: (4) 联立( 1)、(2)、(3)、(4)式可得 (5) 当 时,(5)式可取得最大值1.0606;当 时,(5)式接近1,但不可能取到1因此 的取值范围是(1,1.06)而标准直齿圆柱齿轮的模数比是大于1.07的,因此,图示的大传动比行星齿轮不可能两对都采用直齿标准齿轮传动,至少有一对是采用变位齿轮 5-18解: 这个轮系由几个部分组成,蜗轮蜗杆 1、2组成一个定轴轮系;蜗轮蜗杆5、4′组成一个定轴轮系;齿轮1′、5′组成一个定轴轮系,齿轮4、3、3′、2′组成周转轮系,其中齿轮2′、4是中心轮,齿轮3、3′为行星轮,构件 是行星架 在周转轮系中: (1) 在蜗轮蜗杆 1、2中: (2) 在蜗轮蜗杆 5、4′中: (3) 在齿轮 1′、5′中: (4) 又因为: , , , (5) 联立式( 1)、(2)、(3)、(4)、(5)式可解得: ,即 。
5-19解: 这个轮系由几个部分组成,齿轮 1、2、5′、组成一个周转轮系,齿轮 1、2、2′、3、组成周转轮系,齿轮3′、4、5组成定轴轮系 在齿轮 1、2、5′、 组成的周转轮系中: 由几何条件分析得到: ,则 (1) 在齿轮 1、2、2′、3、 组成的周转轮系中: 由几何条件分析得到: ,则 (2) 在齿轮 3′、4、5组成的定轴轮系中: (3) 又因为: , (4) 联立式( 1)、(2)、(3)、(4)式可解得: 6-1解 顶圆直径 齿高 齿顶厚 齿槽夹角 棘爪长度 图 6.1 题6-1解图 6-2解 拔盘转每转时间0 槽轮机构的运动特性系数 槽轮的运动时间 槽轮的静止时间 6-3解 槽轮机构的运动特性系数 因: 所以 6-4解 要保证 则槽轮机构的运动特性系数应为 因 得 ,则 槽数 和拔盘的圆销数 之间的关系应为: 由此得当取槽数 ~8时,满足运动时间等于停歇时间的组合只有一种: , 6-5 解: 机构类型 工作特点 结构、运动及动力性能 适用场合 棘轮机构 摇杆的往复摆动变成棘轮的单向间歇转动 结构简单、加工方便,运动可靠,但冲击、噪音大,运动精度低 适用于低速、转角不大场合,如转位、分度以及超越等。
槽轮机构 拨盘的连续转动变成槽轮的间歇转动 结构简单,效率高,传动较平稳,但有柔性冲击 用于转速不高的轻工机械中 不完全齿轮机构 从动轮的运动时间和静止时间的比例可在较大范围内变化 需专用设备加工,有较大冲击 用于具有特殊要求的专用机械中 凸轮式间歇运动机构 只要适当设计出凸轮的轮廓,就能获得预期的运动规律 运转平稳、定位精度高,动荷小,但结构较复杂 可用于载荷较大的场合 7-1解 :( 1)先求解该图功的比例尺 ( 2 ) 求最大盈亏功根据 图 7.5做能量指示图将 和 曲线的交点标注 ,, ,, , , , , 将各区间所围的面积分为盈功和亏功,并标注“+”号或“-”号,然后根据各自区间盈亏功的数值大小按比例作出能量指示图(图7.6)如下:首先自 向上做 ,表示 区间的盈功;其次作 向下表示 区间的亏功;依次类推,直到画完最后一个封闭矢量 由图知该机械系统在 区间出现最大盈亏功,其绝对值为: ( 3 )求飞轮的转动惯量 曲轴的平均角速度:; 系统的运转不均匀系数: ; 则飞轮的转动惯量: 图 7.5 图7.6 7-2图 7.7 图7.8 解 :( 1)驱动力矩。
因为给定 为常数,因此 为一水平直线在一个运动循环中,驱动力矩所作的功为 ,它相当于一个运动循环所作的功,即: 因此求得: ( 2)求最大盈亏功 根据 图 7.7做能量指示图将 和 曲线的交点标注 ,,,将各区间所围的面积分为盈功和亏功,并标注“+”号或“-”号,然后根据各自区间盈亏功的数值大小按比例作出能量指示图(图7.8)如下:首先自 向上做 ,表示 区间的盈功;其次作向下表示 区间的亏功;然后作 向上表示 区间的盈功,至此应形成一个封闭区间由图知该机械系统在 区间出现最大盈亏功 欲求 ,先求图7.7中 的长度如图将图中线1和线2延长交于 点,那么在 中, 相当于该三角形的中位线,可知 又在 中, ,因此有: ,则 根据所求数据作出能量指示图,见图 7.8,可知最大盈亏功出现在 段,则 ( 3)求飞轮的转动惯量和质量 7-3解 :原来安装飞轮的轴的转速为 ,现在电动机的转速为 ,则若将飞轮安装在电动机轴上,飞轮的转动惯量为: 7-4解 :( 1)求安装在主轴上飞轮的转动惯量先求最大盈亏功因为 是最大动能与最小动能之差,依题意,在通过轧辊前系统动能达到最大,通过轧辊后系统动能达到最小,因此: 则飞轮的转动惯量: ( 2)求飞轮的最大转速和最小转速。
( 3)因为一个周期内输入功和和输出功相等,设一个周期时间为 ,则: ,因此有: 7-5 解: 图 7.9 一个周期驱动力矩所作的功为:一个周期阻力矩所作的功为: 又 时段内驱动力矩所做的功为:因此最大盈亏功为: 机组的平均角速度为: 机组运转不均匀系数为: 故飞轮的转动惯量为: 7-6答 :本书介绍的飞轮设计方法,没有考虑飞轮以外其他构件动能的变化,而实际上其他构件都有质量,它们的速度和动能也在不断变化,因而是近似的 7-7 解:图 7.10 图7.11 由图见一个运动循环的力矩图有四个重复图示,因此,可以以一个周期只有 来计算 ( 1)求驱动力矩 一个周期内驱动力矩功和阻力矩功相等,又依题意驱动力矩 为常数,故有 , ( 2)求最大盈亏功 根据 图 7.10做能量指示图将 和 曲线的交点标注 ,,,将各区间所围的面积分为盈功和亏功,并标注“+”号或“-”号,然后根据各自区间盈亏功的数值大小按比例作出能量指示图(图7.11)如下:首先自 向上做 ,表示 区间的盈功, ;其次作 向下表示 区间的亏功, ;然后作向上表示 区间的盈功,至此应形成一个封闭区间, 。
由图知该机械系统在 区间出现最大盈亏功 ( 3)求飞轮的转动惯量 ( 4)求飞轮的质量 由课本公式 7-8: 得: 7-8 解 :图 7.12 图7.13 ( 1)求驱动力矩一个周期内驱动力矩功和阻力矩功相等,又依题意驱动力矩 为常数,故有:, ( 2)求最大盈亏功 根据 图7.12做能量指示图将 和 曲线的交点标注 , ,, , 将各区间所围的面积分为盈功和亏功,并标注“+”号或“-”号,然后根据各自区间盈亏功的数值大小按比例作出能量指示图(图7.13)如下:首先自 向下做 ,表示 区间的亏功,;其次作 向上表示 区间的盈功, ;然后作 向下表示 区间的亏功, ;作 向上表示 区间的盈功,至此应形成一个封闭区间, 由图知该机械系统在 区间出现最大盈亏功 ( 3)求飞轮的转动惯量 7-9答 :机械有规律的,周期性的速度变化称为周期性速度波动系统速度波动是随机的、不规则的,没有一定周期的称为非周期性速度波动调节周期性速度波动的常用方法是在机械中加上转动惯量很大的回转件——飞轮非周期性速度波动常用调速器调节经过调节后只能使主轴的速度波动得以减小,而不能彻底根除。
7-10解 :图 7.14 图7.15 ( 1)先求阻力矩因为阻力矩 为常数,故有 , 再求发动机平均功率一个周期内输出功为 ; 一个周期所用的时间为: ; 因此发动机的平均功率为: ( 2)首先求最大盈亏功 根据 图7.14做能量指示图将 和 曲线的交点标注,,, , 将各区间所围的面积分为盈功和亏功,并标注“+”号或“-”号,然后根据各自区间盈亏功的数值大小按比例作出能量指示图(图7.15)如下:首先自 向下做 ,表示 区间的亏功;其次作 向上表示 区间的盈功;然后 向下表示 区间的亏功,至此应形成一个封闭区间 欲求 ,先求图7.15中 的长度由图知 ,因此有: ,则 根据所求数据作出能量指示图,见图 7.15,可知最大盈亏功出现在 段,则 则求飞轮的转动惯量为 ( 3)若将飞轮转动惯量减小 ,而 保持原值,可将飞轮安装在速度较高一点的轴上,设该轴的转速为 ,则有: ,∴ 8-1解 :依题意该转子的离心力大小为 该转子本身的重量为 则 ,即该转子的离心力是其本身重量的 倍 8-2答 :方法如下: ( 1)将转子放在静平衡架上,待其静止,这时不平衡转子的质心必接近于过轴心的垂线下方; ( 2)将转子顺时针转过一个小角度,然后放开,转子缓慢回摆。
静止后,在转子上画过轴心的铅垂线1; ( 3)将转子逆时针转过一个小角度,然后放开,转子缓慢回摆静止后画过轴心的铅垂线2; ( 4)做线1和2的角平分线,重心就在这条直线上 8-3答 :( 1)两种振动产生的原因分析:主轴周期性速度波动是由于受到周期性外力,使输入功和输出功之差形成周期性动能的增减,从而使主轴呈现周期性速度波动,这种波动在运动副中产生变化的附加作用力,使得机座产生振动而回转体不平衡产生的振动是由于回转体上的偏心质量,在回转时产生方向不断变化的离心力所产生的2)从理论上来说,这两种振动都可以消除对于周期性速度波动,只要使输入功和输出功时时相等,就能保证机械运转的不均匀系数为零,彻底消除速度波动,从而彻底消除这种机座振动对于回转体不平衡使机座产生的振动,只要满足静或动平衡原理,也可以消除的3)从实践上说,周期性速度波动使机座产生的振动是不能彻底消除的因为实际中不可能使输入功和输出功时时相等,同时如果用飞轮也只能减小速度波动,而不能彻底消除速度波动因此这种振动只能减小而不能彻底消除对于回转体不平衡产生的振动在实践上是可以消除的对于轴向尺寸很小的转子,用静平衡原理,在静平衡机上实验,增加或减去平衡质量,最后保证所有偏心质量的离心力矢量和为零即可。
对于轴向尺寸较大的转子,用动平衡原理,在动平衡机上,用双面平衡法,保证两个平衡基面上所有偏心质量的离心力食量和为零即可8-4 图 8 . 7 解: 已知的不平衡质径积为设 方向的质径积为 , 方向的质径积为,它们的方向沿着各自的向径指向圆外用作图法求解, 取 ,作图 8 . 7 所示由静平衡条件得: 由图 8-7 量得 , 8-5 图 8 . 9 解: 先求出各不平衡质径积的大小: 方向沿着各自的向径指向外面用作图法求解,取 ,作图 8 . 9 所示由静平衡条件得: 由图 8 . 9 量得 ,方向与水平夹角为 8-6 图8.11 解: ( 1)求质心偏移实际就是求静平衡时的平衡向静,因此可以按照静平衡条件考虑这个问题先求出各不平衡质径积的大小: 方向沿着各自的向径指向外面用作图法求解,取 ,作图 8 . 11 ( a )所示由静平衡条件得: 由图量得 ,则质心偏移的距离为 ,偏移的方向就是平衡质径积的方向,与水平夹角为 ( 2 ) 求左右支反力实际上就是求动平衡时在左右支点所在平面所需要的平衡力先把不平衡质量在两支承所在平面上分解 左支承 : ; 右支承 : ; 则在两个支承所在平面上的质径积的大小分别为: 左支承 : ; 右支承 : ; 方向沿着各自的向径指向外面。
用作图法求解,取 ,作图 8 . 11 ( b )( c )所示由动平衡条件得: 左支承 : ,量得 ,则支反力大小为 右支承 : ,量得 ,则支反力大小为 8-7 图8.13 解: ( 1)先把不平衡质量在两平衡基面 Ⅰ和Ⅱ 上分解 基面 Ⅰ: 基面 Ⅱ: 则在两个基面上的质径积分别为: 基面 Ⅰ: ,方向垂直向下 基面 Ⅱ: ,方向垂直向上 用作图法求解,取 ,作图 8 . 13 ( a )( b )所示由动平衡条件得: 基面 Ⅰ: ,平衡质径积 ,方向垂直向上 基面 Ⅱ: ,平衡质径积 ,方向垂直向下 8-8 图 8.14 解: 先把不平衡质量在两平衡基面 和 上分解 基面: 基面: 则在两个基面上的质径积分别为: 基面: 图 8.15 基面 : 用作图法求解,取 ,作图 8 . 15 ( a )( b )所示由动平衡条件得: 和 由图上量取: , 方向如图 8 . 15 ( a )( b )所示设坐标轴方向如图 8 . 15 所示,用解析法校核 基面 :向有: 向有: 基面 :向有: 向有: 两个平面在 向和 向合力均为零,因此所得结果正确。
由于回转半径为 ,因此所加的平衡质量应为 8-9 图 8.17 解: 先把不平衡质量在两平衡基面 Ⅰ和Ⅱ 上分解 基面 Ⅰ: 基面 Ⅱ: 则在两个基面上的质径积的大小分别为: 基面 Ⅰ: 基面 Ⅱ: 方向沿着各自的向径指向外面用作图法求解,取 ,作图 8 . 17 ( a )( b )所示由动平衡条件得: 基面 Ⅰ:, 量得 , ,方向如图所示 基面 Ⅱ: 量得 , ,方向如图所示 8-10解: ( 1)求左右支反力实际上就是求动平衡时在支点Ⅰ、Ⅱ所在平面所需要的平衡力先把不平衡质量在两平衡基面 Ⅰ和Ⅱ 上分解 基面 Ⅰ: 基面 Ⅱ: 则在两个基面上的质径积的大小分别为: 基面 Ⅰ: 基面 Ⅱ: 方向沿着各自的向径指向外面用作图法求解,取 ,作图 8 . 19 ( a ) 图 8.19 ( b )所示由动平衡条件得: 基面 Ⅰ:,量得 ,则支反力方向如图 8 . 19 ( a )所示,大小为 基面 Ⅱ: 量得 ,则支反力方向如图 8 . 19 ( b )所示,大小为( 2)如果在 面上加一平衡质径积 进行静平衡,则按静平衡条件求解,只需要 , 和三个质径积矢量和为零即可。
方向沿着各自的向径指向外面用作图法求解,取 ,作图 8 . 19 ( c )所示由静平衡条件得:量得 ,方向如图 8 . 19 ( c )所示 ( 3)静平衡之后,按照有三个偏心质量做动平衡计算,求取基面Ⅰ和Ⅱ上的平衡力即可同理把所有 不平衡质量在两平衡基面 Ⅰ和Ⅱ 上分解,然后求基面上的质径积,有: 基面 Ⅰ:, 基面 Ⅱ:, 方向沿着各自的向径指向外面用作图法求解,取 ,作图 8 . 19 ( d )( e )所示由动平衡条件得:基面 Ⅰ:,量得 ,则支反力方向如图 8 . 19 ( d )所示,大小为 基面 Ⅱ: 量得 ,则支反力方向如图 8 . 19 ( e )所示,大小为 ( 4)静平衡后,两个支座的支反力一个增大,一个减小 9-1答 退火:将钢加热到一定温度,并保温到一定时间后,随炉缓慢冷却的热处理方法主要用来消除内应力、降低硬度,便于切削 正火:将钢加热到一定温度,保温一定时间后,空冷或风冷的热处理方法可消除内应力,降低硬度,便于切削加工;对一般零件,也可作为最终热处理,提高材料的机械性能 淬火:将钢加热到一定温度,保温一定时间后,浸入到淬火介质中快速冷却的热处理方法。
可提高材料的硬度和耐磨性,但存在很大的内应力,脆性也相应增加淬火后一般需回火淬火还可提高其抗腐蚀性 调质:淬火后加高温回火的热处理方法可获得强度、硬度、塑性、韧性等均较好的综合力学性能,广泛应用于较为重要的零件设计中 表面淬火:迅速将零件表面加热到淬火温度后立即喷水冷却,使工件表层淬火的热处理方法主要用于中碳钢或中碳合金钢,以提高表层硬度和耐磨性,同时疲劳强度和冲击韧性都有所提高 渗碳淬火:将工件放入渗碳介质中加热,并保温一定时间,使介质中的碳渗入到钢件中的热处理方法适合于低碳钢或低碳合金钢,可提高表层硬度和耐磨性,而仍保留芯部的韧性和高塑性 9-2解 见下表 9-3解查教材表 9-1,Q235的屈服极限 查手册 GB706-88标准,14号热轧工字钢的截面面积 则拉断时所所的最小拉力为 9-4解 查教材表9-1,45钢的屈服极限 许用应力 把夹紧力 向截面中心转化,则有拉力 和弯距 截面面积 抗弯截面模量 则最大夹紧力 应力分布图如图所示 图 9.3 题9-4解图 9-5解 查手册,查手册退刀槽宽度 ,沟槽直径 ,过渡圆角半径,尾部倒角 设所用螺栓为标准六角头螺栓,对于 的螺栓,最小中心距 ,螺栓轴线与箱壁的最小距离 。
9-6解 查手册,当圆轴 时,平键的断面尺寸为 且轴上键槽尺寸 、轮毂键槽尺寸 图 9.5 题9-6解图 9-7解 (1)取横梁作为示力体,当位于支承 右侧 处时 由 得 由 得 由 得 由 得 ( 2)横梁弯矩图 图 9.7 题9-7解图 ( 3)横梁上铆钉组的载荷 力矩 水平分力 垂直分力 9-8解 水平分力在每个铆钉上产生的载荷垂直分力 在每个铆钉上产生的载荷 力矩 在每个铆钉上产生的载荷 各力在铆钉上的方向见图所示 图 9.9 题9-8解图 根据力的合成可知,铆钉 1的载荷最大9-9解 铆钉所受最大载荷 校核剪切强度 校核挤压强度 均合适 9-10解 支承 可用铸铁HT200或铸钢ZG270-500其结构立体图见图 图 9.10 题9-10解图 支承 的可能失效是回转副的磨损失效,或回转副孔所在横截面处拉断失效 9-11解 ( 1)轮齿弯曲应力可看成是脉动循环变应力 ( 2)大齿轮循环次数 ( 3)对应于循环总次数 的疲劳极限能提高 提高了 1.24倍 9-12答 由图5-1可见,惰轮4的轮齿是双侧受载当惰轮转一周时,轮齿任一侧齿根处的弯曲应力的变化规律:未进入啮合,应力为零,这一侧进入啮合时,该侧齿根受拉,并逐渐达到最大拉应力,然后退出啮合,应力又变为零。
接着另一侧进入啮合,该侧齿根受压,并逐渐达到最大压应力,当退出啮合时,应力又变为零所以,惰轮4轮齿根部的弯曲应力是对称循环变应力 9-13答 在齿轮传动中,轮齿工作面上任一点所产生的接触应力都是由零(该点未进入啮合)增加到一最大值(该点啮合),然后又降低到零(该点退出啮合),故齿面表面接触应力是脉动循环变应力 9-14解 ( 1)若支承可以自由移动时,轴的伸长量 ( 2)两支承都固定时,因轴的温升而加在支承上的压力 9-15 基孔制优先配合为 、 、 、 、 、 、 、 、 、 、 、 、 ,试以基本尺寸为 绘制其公差带图 图 9.13 题9-15解图 9-16答 (1)公差带图见题9-16解图 ( 2)、 均采用的是基轴制,主要是为了制造中减少加工孔用的刀具品种 图 9.15 题9-16解图10-1证明 当升角与当量摩擦角 符合 时,螺纹副具有自锁性 当 时,螺纹副的效率所以具有自锁性的螺纹副用于螺旋传动时,其效率必小于 50% 10-2解 由教材表10-1、表10-2查得 ,粗牙,螺距 ,中径 螺纹升角 ,细牙,螺距 , 中径 螺纹升角 对于相同公称直径的粗牙螺纹和细牙螺纹中,细牙螺纹的升角较小,更易实现自锁。
10-3解 查教材表10-1得 粗牙 螺距 中径 小径 螺纹升角 普通螺纹的牙侧角 ,螺纹间的摩擦系数 当量摩。