文档详情

必修四棱柱、棱锥、棱台的结构特征

s****a
实名认证
店铺
DOCX
273.89KB
约14页
文档ID:217531989
必修四棱柱、棱锥、棱台的结构特征_第1页
1/14

棱柱、棱锥、棱台的结构特征[学习目标] 1.通过对实物模型的观察,归纳认知简单多面体——棱柱、棱锥、棱台的结构 特征.2.能运用棱柱、棱锥、棱台的结构特征来判断、描述现实生活中的实物模型.戸知识梳理 自主学习知识点一 空间几何体1. 概念:如果只考虑物体的形状和大小,而不考虑其他因素,那么由这些物体抽象岀来的空 间图形叫做空间几何体.2. 多面体与旋转体知识点二 棱柱、棱锥、棱台的结构特征多面体定义图形及表示相关概念分类棱柱有两个面互相平 行,其余各面都是 四边形,并且每相 邻两个四边形的公 共边都互相平行, 由这些面所围成的 多面体叫做棱柱.皿-:: '诙如图可记作:棱柱ABCDEF-A' B'C D' E' F底面(底):两个互相平行 的面.侧面:其余各面.侧棱:相邻侧面的公共边. 顶点:侧面与底面的公共 顶点.按底面多边 形的边数 分:三棱柱、 四 棱柱、 棱锥有一个面是多边 形,其余各面都是 有一个公共顶点的血:A JJ底面(底):多边形面. 侧面:有公共顶点的各个 三角形面.按底面多边 形的边数 分:三棱锥、三角形,由这些面 所围成的多面体叫 做棱锥.如图可记作,棱锥S-ABCD侧棱:相邻侧面的公共边.四 棱锥、……顶点:各侧面的公共顶点.棱台用一个平行于棱锥 底面的平面去截棱 锥,底面与截面之 间的部分叫做棱台.*如图可记作:棱台ABCD-A B' CD'上底面:原棱锥的截面. 下底面:原棱锥的底面.侧面:其余各面.侧棱:相邻侧面的公共边. 顶点:侧面与上(下)底面 的公共顶点.由三棱锥、 四棱锥、五 棱锥…截得 的棱台分别 叫做三棱 台、四棱台、 五棱台 思考 (1)棱柱的侧面一定是平行四边形吗?(2)棱台的上下底面互相平行,各侧棱延长线一定相交于一点吗?答 (1)根据棱柱的概念侧棱平行、底面平行可知,棱柱的侧面一定是平行四边形. (2)根据棱台的定义可知其侧棱延长线一定交于一点.戸题型探究 重点突破题型一 棱柱的结构特征例 1 下列说法中,正确的是( )A. 棱柱中所有的侧棱都相交于一点B. 棱柱中互相平行的两个面叫做棱柱的底面C. 棱柱的侧面是平行四边形,而底面不是平行四边形D. 棱柱的侧棱相等,侧面是平行四边形答案 D解析 A选项不符合棱柱的特点;B选项中,如图①,构造四棱柱ABCD-A1B1C1D1,令四 边形ABCD是梯形,可知平面ABB”]〃平面DCCR,但这两个面不能作为棱柱的底面;C 选项中,如图②,底面ABCD可以是平行四边形;D选项是棱柱的特点.故选D.① ②跟踪训练 1 下列关于棱柱的说法错.误.的是( )A. 所有的棱柱两个底面都平行B. 所有的棱柱一定有两个面互相平行,其余各面每相邻面的公共边互相平行C. 有两个面互相平行,其余各面都是四边形的几何体一定是棱柱D. 棱柱至少有五个面答案 C解析对于A、B、D,显然是正确的;对于C,棱柱的定义是这样的:有两 个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互 相平行,由这些面围成的几何体叫做棱柱,显然题中漏掉了“并且每相邻两 个四边形的公共边都互相平行”这一条件,因此所围成的几何体不一定是棱柱.如图所示的 几何体就不是棱柱,所以C错误.题型二 棱锥、棱台的结构特征 例 2 下列关于棱锥、棱台的说法:① 棱台的侧面一定不会是平行四边形;② 由四个平面围成的封闭图形只能是三棱锥;③ 棱锥被平面截成的两部分不可能都是棱锥.其中正确说法的序号是 .答案 ①②解析 ①正确,棱台的侧面一定是梯形,而不是平行四边形;② 正确,由四个平面围成的封闭图形只能是三棱锥;③ 错误,如图所示四棱锥被平面截成的两部分都是棱锥.跟踪训练 2 下列说法中,正确的是( )① 棱锥的各个侧面都是三角形;② 有一个面是多边形,其余各面都是三角形,由这些面围成的几何体是棱锥;③ 四面体的任何一个面都可以作为棱锥的底面;④ 棱锥的各侧棱长相等.A.①②B.①③C.②③D.②④答案 B解析由棱锥的定义,知棱锥的各侧面都是三角形,故①正确;有一个面是多边形,其余各 面都是三角形,如果这些三角形没有一个公共顶点,那么这个几何体就不是棱锥,故②错; 四面体就是由四个三角形所围成的几何体,因此四面体的任何一个面作底面的几何体都是三 棱锥,故③正确;棱锥的侧棱长可以相等,也可以不相等,故④错.题型三 多面体的表面展开图例 3 画出如图所示的几何体的表面展开图.解 表面展开图如图所示:跟踪训练 3 如图是三个几何体的侧面展开图,请问各是什么几何体?解 由几何体的侧面展开图的特点,结合棱柱、棱锥、棱台的定义,可把侧面展开图还原为原几何体,如图所示:(J) ⑵ ⑶所以(1)为五棱柱;(2)为五棱锥;(3)为三棱台.例4如图所示,在侧棱长为2/3的正三棱锥V-ABC中,ZAVB=ZBVC=ZCVA=40。

过点A作截面AEF分别交VB, VC于点E, F,求截面AAEF周长的最小值.分析 将正三棱锥沿侧棱VA展开求截面周长转化为求线段长由已知 ZAVB=ZBVC=ZCVA]=40得 ZAVD=60°.3在 RtAAVD 中,AD=VAsin 60° = 2V§X专=3,即 AA] = 2AD=6.所以截面AAEF周长的最小值是6.〒当堂检测 自晋自纠1.下列命题中,真命题是( )A. 顶点在底面上的投影到底面各顶点的距离相等的三棱锥是正三棱锥B. 底面是正三角形,各侧面是等腰三角形的三棱锥是正三棱锥C. 顶点在底面上的投影为底面三角形的垂心的三棱锥是正三棱锥D. 底面是正三角形,并且侧棱都相等的三棱锥是正三棱锥2. 下列三个命题:① 用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台;② 两个底面平行且相似,其余各面都是菱形的多面体是棱台;③ 有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台 其中,正确的有( )A.0 个 B.1 个 C.2 个 D.3 个3. 如图所示,不是正四面体(各棱长都相等的三棱锥)的展开图的是( )'.!:■ ② ③ 比A.①③ B.②④ C.③④ D.①②4.下列几何体中, 是棱柱, 是棱锥, 是棱台(仅填相应序号).5.如图,将装有水的长方体水槽固定底面一边后将水槽倾斜一个小角度,则倾斜后水槽中的水形成的几何体的形状 .戸课时精练一、选择题1.下列四个命题中,真命题有( )②底面是矩形的直平行六面体是长方体④直平行六面体是长方体.① 底面是平行四边形的四棱柱是平行六面体D.4个③直四棱柱是直平行六面体;A.1 个 B.2 个 C.3 个2.一般棱台不具有的性质是( )A.两底面相似 B.侧面都是梯形C.侧棱都相等 D.侧棱延长后都交于一点3. 在正五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个正五棱柱对角线的条数为( )A.20 B.15 C.12 D.104. 某棱台的上、下底面对应边之比为1:2,则上、下底面面积之比是()A.1 : 2 B.1 : 4 C.2 : 1 D.4 : 15. 用一个平行于棱锥底面的平面去截这个棱锥,截得的棱台上、下底面的面积比为1: 4,且截去的棱锥的高是3 m,则棱台的高是()A.12 cm B.9 cm C.6 cm D.3 cm6. 某同学制作了一个对面图案相同的正方体礼品盒(如图),则这个正方体礼品盒的表面展开图应该为( )A BC D7. 如图,往透明塑料制成的长方体 ABCD-A1B1C1D1 容器内灌进一些水,将容器底面一边 BC 固定于地面上,再将容器倾斜,随着倾斜度的不同,有下列三个说法:① 水的部分始终呈棱柱状;② 水面四边形 EFGH 的面积不改变;③ 当EGAA1时,AE+BF是定值.其中,正确的说法是( )A.①② B.① C.①②③D.①③二、填空题8•如图,M是棱长为2 cm的正方体ABCD-A1B1C1D1的棱CC]的中点,沿正方体表面从点A 到点M的最短路程是 cm.9. 下列叙述正确的是 .(只填序号)① 四棱锥的四个侧面都可以是直角三角形;② 三棱锥的四个面都可以是直角三角形;③ 用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台;④ 两个底面平行且相似,其余各面都是梯形的多面体是棱台.10. 在正方体上任意选择4个顶点,它们可能是如下各种几何体的4个顶点,这些几何体是 .(写出所有正确结论的编号)①矩形;②不是矩形的平行四边形;③有三个面为等腰直角三角形,有一个面为等边三角形 的四面体;④每个面都是等边三角形的四面体;⑤每个面都是直角三角形的四面体11.如图所示,在三棱锥S-ABC 中,SA=SB=SC=1,ZASB=ZASC=ZBSC=30°,一只三、解答题12.如图,在边长为2a的正方形ABCD中,E, F分别为AB, BC的中点,沿图中虚线将3个三角形折起,使点 A、B、C 重合,重合后记为点 P. 问:(1)折起后形成的几何体是什么几何体?(2) 这个几何体共有几个面,每个面的三角形有何特点?(3) 每个面的三角形面积为多少?13.长方体ABCD-A1B1C1D1(如图所示)中,AB=3, BC=4, AfA = 5,现有一甲壳虫从A出发 沿长方体表面爬行到C1来获取食物,试画出它的最短爬行路线,并求其路程的最小值.当堂检测答案1.答案 D解析 对于选项A,到三角形各顶点距离相等的点为三角形外心,该三角形不一定为正三角形,故该命题是假命题;对于选项B,如图所示, 干△ABC 为正三角形,若 PA=PB=AB=BC=AC^PC, △PAB, △PBC,△PAC都是等腰三角形,但它不是正三棱锥,故该命题是假命题;对于选项C,顶点在底面上的投影为底面三角形的垂心,底面为任意三角形皆可,故该命题 是假命题; 对于选项D,顶点在底面上的正投影是底面三角形的外心,又因为底面三角形为正三角形, 所以外心即为中心,故该命题是真命题.2.答案 A解析①中的平面不一定平行于底面,故①错;②中侧面是菱形,所以侧棱互相平行,延长解析 可选择阴影三角形作为底面进行折叠,发现①②可折成正四面体,③④不论选哪一个三角形作底面折叠都不能折成正四面体.4. 答案 ①③④ ⑥ ⑤解析结合棱柱、棱锥和棱台的定义可知①③④是棱柱,⑥是棱锥,⑤是棱台.5. 答案 四棱柱解析 由于倾斜角度较小,所以倾斜后水槽中水形成的几何体的形状应为四棱柱.课时精练答案一、选择题1.答案 B解析根据平行六面体的定义,知①为真命题;根据长方体的定义,知②为真命题;直平行 六面体是侧棱与底面垂直的平行六面体,所以其底面必是平行四边形,而直四棱柱的底面不 一定是平行四边形,所以③为假命题;同理,长方体是底面为矩形的直平行六面体,所以④ 为假命题.2.答案 C 解析 当棱台是斜棱台时其侧棱不全相等.3.答案 D解析 正五棱柱任意不相邻的两条侧棱可确定一个平面,每个平面可得到正五棱柱的两条对 角线,5个平面共可得到10条对角线,故选D.4.答案 B解析 因为棱台的上下底面相似,所以上下底面面积之比等于边长比的平方.5. 答案 D解析 由棱锥、棱台的性质可知,棱台的上、下底面相似.又因为上、下底面的面积比为1 : 4, 所以上、下底面的边长比为1 : 2,所以截去的小棱锥与原大棱锥的髙之比为1 : 2,则棱台 的高是3 cm.6. 答案 A解析 两个[☆不能并列相邻,B、D错误;两个[※不能并列相邻,C错误,故选A.也可 通过实物制作检验来判定.7.答案 D解析 显然水的部分呈三棱柱或四棱柱状,故①正确;容器倾斜度越大,水面四边形EFGH 的面积越大,故②不正确;由于水的体积不变,四棱柱ABFE—DCGH的髙不变,所以梯形 ABFE的面积不变,所以AE+BF是定值,故③正确.所以四个命题中①③正确.故选D. 二、填空题8•答案\応解析由题意,若以BC为轴展开,则A,M两点连成的线段所在的直角三角形的两直角边 的长度分别为2 cm, 3 cm,故两点之间的距离是冷正cm.若以BB]为轴展开,则A,M两点 连成的线段所在的直角三角形的两直角边的长度分别为1,4,故两点之间的距离是巧cm. 故沿正方体表面从点A到点M的最短路程是<13 cm.9. 答案 ①②解析 如图,当四棱锥的底面是一个矩形,并且一条侧棱垂直于底面时,四棱锥的四个侧面 就可以都是直角三角形,所以①是正确的;如图,当三棱锥满足侧棱AD丄底面DCB(其中ABCD中,ZBCD是直角)时,三棱锥的四个面就都是直角三角形,所以②是正确的;③中的平面不一定平行于底面,所以③是错误的;若④中多面体的侧棱延长后不能交于一点,则相应的多面体就不是棱台,所以④是错误的.10. 答案 ①③④⑤解析 在正方体ABCD-A1B1C1D1上任意选择4个顶点,它们可能是如下各种几何体的4 个顶点,这些几何体是:①矩形,如四边形ACqAj③有三个面为等腰直角三角形,有一 个面为等边三角形的四面体,如A-ABD;④每个面都是等边三角形的四面体,如A-CB]D]; ⑤每个面都是直角三角形的四面体,如A—A]DC, 所以填①③④⑤.11.答案抱解析 如图所示,将三棱锥S—ABC沿SA剪开,连接AAZ,则AA'为最短距离,ZASAz12.解 (1)如图,折起后的几何体是三棱锥.(2)这个几何体共有4个面,其中ADEF为等腰三角形,4PEF为等腰直角三角形,4PE 和ADPF均为直角三角形.(3)S»^21 - 2S^def=S正方形 ABCD~S^PEF~S^DPF~S^DPE=(^a^2~la2~a2~a2 =3尹.13.解 把长方体的部分面展开,如图所示.对甲、乙、丙三种展开图利用勾股定理可得AC]的长分别为、:可、:74^80, 由此可见乙是最短线路,所以甲壳虫可以先在长方形ABB”]内由A到E, 再在长方形BCC]B]内由E到C],也可以先在长方形AA]D]D内由A到F, 再在长方形DCC]D]内由F到q,其最短路程为P方.S^dpf=S^dpe=2 X2aXa=a2。

下载提示
相关文档
正为您匹配相似的精品文档