决战2020年中考典型压轴题大突破模块二 中考压轴题几何变换综合专题考向导航 在近几年的中考试题中,为了体现教育部关于中考命题改革的精神,出现了动手操作题动手操作题是让学生在通过实际操作的基础上设计有关的问题这类题对学生的能力有更高的要求,有利于培养学生的创新能力和实践能力,体现新课程理念此类试题的显著特点是以动手为基础的手脑并用的形式,有助于创新能力的培养和实践能力的提高,改变了以往一只笔一张纸的学习方式,是新课程改革的基本理念之,在中考中越来越受到关注常见的有折叠、旋转和平移操作操作型问题是指通过动手测量作图(象)、取值、计算等实验,猜想获得数学结论的探索研究性活动,这类活动完全模拟以动手为基础的手脑结合的科学研究形式,需要动手操作、合情合理和验证,不但有助于实践能力和创新能力的培养,更有助于养成实验研究的习惯,符合新课程标准,特别强调发现式学习、探究式学习和研究式学习,鼓励学生进行“微科研”活动,提倡要积极引导学生从事实验活动和实践活动,培养学生乐于动手、勤于实践的意识和习惯,切实提高学生的动手能力、实践能力的指导思想因此,实验操作问题将成为今后中考的热点题型 专题07 动手折叠问题方法点拨此类题目考查学生动手操作能力,它包括裁剪、折叠、拼图,它既考查学生的动手能力,又考查学生的想象能力,住往与面积、对称性质联系在一起。
精典例题(2019•拱墅区二模)已知边长为3的正方形ABCD中,点E在射线BC上,且BE=2CE,连接AE交射线DC于点F,若△ABE沿直线AE翻折,点B落在点B1处.(1)如图1,若点E段BC上,求CF的长;(2)求sin∠DAB1的值;(3)如果题设中“BE=2CE”改为“BECE=x”,其它条件都不变,试写出△ABE翻折后与正方形ABCD大众部分的面积y与x的关系式及自变量x的取值范围(只要写出结论,不需写出解题过程).【分析】(1)利用平行线性质以及线段比求出CF的值;(2)本题要分两种方法讨论:①若点E段BC上;②若点E在边BC的延长线上.需运用勾股定理求出与之相联的线段;(3)本题分两种情况讨论:若点E段BC上,y=9x2x+2,x的范围为x>0;若点E在边BC的延长线上,y=9x-92x,x的范围为x>1.稳固突破1.(2019•昆明三模)如图①,将一个矩形纸片OABC放置在平面直角坐标系中,点A坐标是(3,0),点C坐标是(0,2),点O的坐标是(0,0),点E是AB的中点,在OA上取一点D,将△BDA沿BD翻折,使点A落在BC边上的点F处.(1)求点E、F的坐标;(2)如图2,若点P是线段DA上的一个动点(点P不与点D,A重合),过P作PH⊥DB于H,设OP的长为x,△DPH的面积为S,试用关于x的代数式表示S.2.(2019•大庆三模)在矩形ABCD中,AB=10,P是边AB上一点,把△PBC沿直线PC折叠,顶点B的对应点是点G,过点B作BE⊥CG,垂足为E且在AD上,BE交PC于点F.(1)求证:BP=BF;(2)当BP=8时,求BE•EF的值.3.(2019•兴庆区校级二模)如图,在矩形ABCD中,点E在边CD上,将该矩形沿AE折叠,使点D落在边BC上的点F处,过点F作FG∥CD,交AE于点G连接DG.(1)求证:四边形DEFG为菱形;(2)若CD=8,CF=4,求CEDE的值.4.(2019•南岗区校级二模)已知:在矩形ABCD中,E是AB上一点,连接CE,将△BCE沿CE翻折,使B落到F处,延长EF交CD延长线于G.(1)求证:EG=CG;(2)若BC=8,tan∠BEC=2,求GF的长.5.(2019•长春四模)探究:如图①点E、F分别在正方形ABCD的边BC、CD上,连结AE、AF、EF,将△ABE、△ADF分别沿AE、AF折叠,折叠后的图形恰好能拼成与△AEF完全重合的三角形.若BE=2,DF=3,求AB的长;拓展:如图②点E、F分别在四边形BACD的边BC、CD上,且∠B=∠D=90°.连结AE、AF、EF将△ABE、△ADF分别沿AE、AF折叠,折叠后的图形恰好能拼成与△AEF完全重合的三角形.若∠EAF=30°,AB=4,则△ECF的周长是 .6.(2019•临泽模拟)如图,将长方形纸片ABCD折叠,使点C与点A重合,折痕EF分别与AB、DC交于点E和点F. (1)证明:△ADF≌△AB′E;(2)若AD=12,DC=18,求△AEF的面积.7.(2019•无锡模拟)已知边长为3的正方形ABCD中,点E在射线BC上,且BE=2CE,连结AE交射线DC于点F,将△ABE沿直线AE翻折,点B落在点B1处.(1)如图1,若点E段BC上,求CF的长;(2)求sin∠DAB1的值.8.(2019•广陵区校级二模)如图,将矩形ABCD先过点A的直线L1翻折,点DA的对应点D′刚好落在边BC上,直线L1交DC于点F;再将矩形ABCD沿过点A的直线L2翻折,使点B的对应点G落在AD′上,EG的延长线交AD于点H.(1)当四边形AED′H是平行四边形时,求∠AD′H的度数.(2)当点H与点D刚好重合时,试判断△AEF的形状,并说明理由.9.(2019•海州区)如图,在△ACB中,∠ACB=90°,∠A=75°,点D是AB的中点.将△ACD沿CD翻折得到△A′CD,连接A′B.(1)求证:CD∥A′B;(2)若AB=4,求A′B2的值.10.(2019•广陵区校级模拟)发现(1)如图1,把△ABC沿DE折叠,使点A落在点A’处,请你判断∠1+∠2与∠A有何数量关系,直接写出你的结论,不必说明理由思考(2)如图2,BI平分∠ABC,CI平分∠ACB,把△ABC折叠,使点A与点I重合,若∠1+∠2=100°,求∠BIC的度数;拓展(3)如图3,在锐角△ABC中,BF⊥AC于点F,CG⊥AB于点G,BF、CG交于点H,把△ABC折叠使点A和点H重合,试探索∠BHC与∠1+∠2的关系,并证明你的结论.11.(2019•铜山区)如图,长方形纸片ABCD中,AB=8,将纸片折叠,使顶点B落在边AD上的E点处,折痕的一端G点在边BC上.(1)如图1,当折痕的另一端F在AB边上且AE=4时,求AF的长(2)如图2,当折痕的另一端F在AD边上且BG=10时,①求证:EF=EG.②求AF的长.(3)如图3,当折痕的另一端F在AD边上,B点的对应点E在长方形内部,E到AD的距离为2cm,且BG=10时,求AF的长.12.(2019•道里区校级模拟)已知,如图1,在△ABC和△ADC中,AB=2AC,∠ACD=90°,AD=BD,(1)求证:∠BAC=2∠ABD.(2)如图2,当∠BAC=120°时,设AD与BC的交点为O,将△ADC沿CD所在直线折叠,得到△EDC,连接OE,射线OM交DE于M,交BD的延长线于N,且∠EON=∠ABD,若MN=3,求:OE的长.13.(2019•大连模拟)在Rt△ABC中,∠A=90°,AB=AC,点D段BC上,∠EDB=12∠C,交AB于F,BE⊥DE于E,探究线段BE与FD的数量关系,并加以证明.小白的想法是,将△BDE以直线DE为对称轴翻折,再通过证明△GBH≌△FDH得到结论,请按照小白的想法完成此题解答.证明:延长BE至点G,使EG=EB,连接GD交AB于点H.【解决问题】△ABC中,∠C=2∠B,点E是线段BC的延长线上一点,CE=kBC,AD平分∠BAC交BC于点D,EF⊥AD于F,交AC于G,求CDCG的值.14.(209•鞍山二模)如图,正方形ABCD中,AD=8,点F是AB中点,点E是AC上一点,DE⊥EF,连接DF交AC于点G.(1)求△DEF的面积;(2)将△FEG沿EF翻折得到△EFM,EF交DM于点N.①求证:点M在对角线BD上;②求MN的长度.15.(2019•江阴市)已知,如图,在Rt△ABC中,∠C=90°,∠A=60°,AC=3,点D为AB的中点,点E为线段BC上的点,连接DE,把△BDE沿着DE翻折得△B1DE.(1)当A、D、B1、C组成的四边形为平行四边形,求DE的长;(2)当DB1⊥AC时,求△DEB1和△ABC重叠部分的面积.16.(2019•宝应三模)将平行四边形纸片ABCD按如图方式折叠,使点C与A重合,点D落到D'处,折痕为EF.(1)求证:△ABE≌△AD'F;(2)连接CF,判断四边形AECF是什么特殊四边形?证明你的结论.17.(2019•深圳模拟)已知矩形纸片ABCD中,AB=2,BC=3.操作:将矩形纸片沿EF折叠,使点B落在边CD上.探究:(1)如图1,若点B与点D重合,你认为△EDA1和△FDC全等吗?如果全等,请给出证明,如果不全等,请说明理由;(2)如图2,若点B与CD的中点重合,请你判断△FCB1、△B1DG和△EA1G之间的关系,如果全等,只需写出结果,如果相似,请写出结果和相应的相似比;(3)如图2,请你探索,当点B落在CD边上何处,即B1C的长度为多少时,△FCB1与△B1DG全等.知识改变命运。