高考数学一轮复习第8章平面解析几何8.3圆的方程学案文[知识梳理]1.圆的方程标准方程:(x-a)2+(y-b)2=r2(r>0)一般方程:x2+y2+Dx+Ey+F=0(D2+E2-4F>0)2.点与圆的位置关系平面上的一点M(x0,y0)与圆C:(x-a)2+(y-b)2=r2之间存在着下列关系:设d为点M(x0,y0)与圆心(a,b)的距离(1)d>r⇔M在圆外,即(x0-a)2+(y0-b)2>r2⇔M在圆外;(2)d=r⇔M在圆上,即(x0-a)2+(y0-b)2=r2⇔M在圆上;(3)d0).若圆C上存在点P,使得∠APB=90°,则m的最大值为( )A.7 B.6 C.5 D.4∠APB=90°,点P在以AB为直径的圆上,求m的最大值转化为求半径|OP|的最大值.答案 B解析 根据题意,画出示意图,如图所示,则圆心C的坐标为(3,4),半径r=1,且|AB|=2m,因为∠APB=90°,连接OP,易知|OP|=|AB|=m.要求m的最大值,即求圆C上的点P到原点O的最大距离.因为|OC|= =5,所以|OP|max=|OC|+r=6,即m的最大值为6.故选B.方法技巧求解与圆有关的最值问题的方法1.借助几何性质求最值处理与圆有关的最值问题,应充分考虑圆的几何性质,并根据代数式的几何意义,借助数形结合思想求解.(1)形如μ=形式的最值问题,可转化为动直线斜率的最值问题;见角度1典例.(2)形如t=ax+by形式的最值问题,可转化为动直线截距的最值问题或转化为线性规划问题;见结论探究1.(3)形如(x-a)2+(y-b)2形式的最值问题,可转化为动点到定点的距离的平方的最值问题.见结论探究2.2.建立函数关系式求最值根据题中条件列出关于所求目标式子的函数关系式,再根据函数知识、基本不等式求最值.冲关针对训练1.(xx·福建师大附中联考)已知圆O的半径为1,PA,PB为该圆的两条切线,A,B为切点,那么·的最小值为( )A.-4+ B.-3+C.-4+2 D.-3+2答案 D解析 设|PO|=t,向量与的夹角为θ,则||=||= ,sin=,cosθ=1-2sin2=1-,∴·=||||cosθ=(t2-1)(t>1),∴·=t2+-3(t>1),利用基本不等式可得·的最小值为2-3,当且仅当t=时,取等号.故选D.2.已知圆C1:(x-2)2+(y-3)2=1,圆C2:(x-3)2+(y-4)2=9,M,N分别是圆C1,C2上的动点,P为x轴上的动点,则|PM|+|PN|的最小值为( )A.5-4 B.-1 C.6-2 D.答案 A解析 圆C1,C2的图象如图所示.设P是x轴上任意一点,则|PM|的最小值为|PC1|-1,同理,|PN|的最小值为|PC2|-3,则|PM|+|PN|的最小值为|PC1|+|PC2|-4.作C1关于x轴的对称点C′1(2,-3),连接C′1C2,与x轴交于点P,连接PC1,可知|PC1|+|PC2|的最小值为|C′1C2|,则|PM|+|PN|的最小值为5-4.故选A.题型3 与圆有关的轨迹问题 (xx·全国卷Ⅰ)已知点P(2,2),圆C:x2+y2-8y=0,过点P的动直线l与圆C交于A,B两点,线段AB的中点为M,O为坐标原点.(1)求M的轨迹方程;(2)当|OP|=|OM|时,求l的方程及△POM的面积.由圆的性质可知:CM⊥MP,由直接法可解得(1).解 (1)圆C的方程可化为x2+(y-4)2=16,所以圆心为C(0,4),半径为4.设M(x,y),则=(x,y-4),=(2-x,2-y).由题设知·=0,故x(2-x)+(y-4)(2-y)=0,即(x-1)2+(y-3)2=2.由于点P在圆C的内部,所以M的轨迹方程是(x-1)2+(y-3)2=2.(2)由(1)可知M的轨迹是以点N(1,3)为圆心,为半径的圆.由于|OP|=|OM|,故O段PM的垂直平分线上,又P在圆N上,从而ON⊥PM.因为ON的斜率为3,所以l的斜率为-,故l的方程为x+3y-8=0.又|OM|=|OP|=2,O到l的距离为,所以|PM|=,S△POM=××=,故△POM的面积为.方法技巧与圆有关的轨迹问题的4种求法求与圆有关的轨迹问题时,题目的设问有两种常见形式,作答也应不同.若求轨迹方程,则把方程求出化简即可;若求轨迹,则必须根据轨迹方程,指出轨迹是什么曲线.冲关针对训练1.(xx·南平一模)平面内动点P到两点A、B距离之比为常数λ(λ>0,λ≠1),则动点P的轨迹叫做阿波罗尼斯圆,若已知A(-2,0),B(2,0),λ=,则此阿波尼斯圆的方程为( )A.x2+y2-12x+4=0 B.x2+y2+12x+4=0C.x2+y2-x+4=0 D.x2+y2+x+4=0答案 D解析 由题意,设P(x,y),则=,化简可得x2+y2+x+4=0,故选D.2.已知圆x2+y2=4上一定点A(2,0),B(1,1)为圆内一点,P,Q为圆上的动点.(1)求线段AP中点的轨迹方程;(2)若∠PBQ=90°,求线段PQ中点的轨迹方程.解 (1)设AP的中点为M(x,y),由中点坐标公式可知,P点坐标为(2x-2,2y).因为P点在圆x2+y2=4上,所以(2x-2)2+(2y)2=4.故线段AP中点的轨迹方程为(x-1)2+y2=1.(2)设PQ的中点为N(x,y).在Rt△PBQ中,|PN|=|BN|.设O为坐标原点,连接ON,则ON⊥PQ,所以|OP|2=|ON|2+|PN|2=|ON|2+|BN|2,所以x2+y2+(x-1)2+(y-1)2=4.故线段PQ中点的轨迹方程为x2+y2-x-y-1=0.题型4 与圆有关的对称问题 已知圆C1:(x+1)2+(y-1)2=1,圆C2与圆C1关于直线x-y-1=0对称,则圆C2的方程为( )A.(x+2)2+(y-2)2=1 B.(x-2)2+(y+2)2=1C.(x+2)2+(y+2)2=1 D.(x-2)2+(y-2)2=1圆与圆关于直线对称问题转化为圆心关于直线对称问题.答案 B解析 圆C1的圆心坐标为(-1,1),半径为1,设圆C2的圆心坐标为(a,b),由题意得解得所以圆C2的圆心坐标为(2,-2),又两圆的半径相等,故圆C2的方程为(x-2)2+(y+2)2=1.故选B.方法技巧1.圆的轴对称性圆关于直径所在的直线对称.2.圆关于点对称(1)求已知圆关于某点对称的圆,只需确定所求圆的圆心位置.(2)两圆关于某点对称,则此点为两圆圆心连线的中点.3.圆关于直线对称(1)求已知圆关于某条直线对称的圆,只需确定所求圆的圆心位置.见典例.(2)两圆关于某条直线对称,则此直线为两圆圆心连线的垂直平分线.冲关针对训练1.(xx·锦州期末)若曲线x2+y2+a2x+(1-a2)y-4=0关于直线y=x对称的曲线仍是其本身,则实数a为( )A.或- B.或-C.或- D.-或答案 B解析 曲线x2+y2+a2x+(1-a2)y-4=0,即曲线2+2=,∵曲线x2+y2+a2x+(1-a2)y-4=0关于直线y=x对称的曲线仍是其本身,故曲线的中心在直线y=x上,故有-=-,求得a=或a=-,故选B.2.已知圆x2+y2=4与圆x2+y2-6x+6y+14=0关于直线l对称,则直线l的方程是( )A.x-2y+1=0 B.2x-y-1=0C.x-y+3=0 D.x-y-3=0答案 D解析 解法一:圆心分别为(0,0),(3,-3),其中点为P应在直线l上,经检验答案为D.解法二:两圆方程相减得x-y-3=0,即为l的方程.故选D.1.(xx·全国卷Ⅱ)圆x2+y2-2x-8y+13=0的圆心到直线ax+y-1=0的距离为1,则a=( )A.- B.- C. D.2答案 A解析 圆的方程可化为(x-1)2+(y-4)2=4,则圆心坐标为(1,4),圆心到直线ax+y-1=0的距离为=1,解得a=-.故选A.2.(xx·山东青岛一模)已知两点A(0,-3),B(4,0),若点P是圆C:x2+y2-2y=0上的动点,则△ABP的面积的最小值为( )A.6 B. C.8 D.答案 B解析 x2+y2-2y=0可化为x2+(y-1)2=1,则圆C为以(0,1)为圆心,1为半径的圆.如图,过圆心C向直线AB作垂线交圆于点P,连接BP,AP,这时△ABP的面积最小,直线AB的方程为+=1,即3x-4y-12=0,圆心C到直线AB的距离d=,又AB==5,∴△ABP的面积的最小值为×5×=.故选B.3.(xx·全国卷Ⅰ)一个圆经过椭圆+=1的三个顶点,且圆心在x轴的正半轴上,则该圆的标准方程为________.答案 2+y2=解析 由已知可得该圆经过椭圆的三个顶点A(4,0),B(0,2),C(0,-2),易知线段AB的垂直平分线的方程为2x-y-3=0.令y=0,得x=,所以圆心坐标为,则半径r=4-=.故该圆的标准方程为2+y2=.4.(xx·全国卷Ⅲ)已知抛物线C:y2=2x,过点(2,0)的直线l交C于A,B两点,圆M是以线段AB为直径的圆.(1)证明:坐标原点O在圆M上;(2)设圆M过点P(4,-2),求直线l与圆M的方程.解 (1)证明:设A(x1,y1),B(x2,y2),l:x=my+2,由可得y2-2my-4=0,则y1y2=-4.又x1=,x2=,故x1x2==4.因此OA的斜率与OB的斜率之积为·==-1,所以OA⊥OB,故坐标原点O在圆M上.(2)由(1)可得y1+y2=2m,x1+x2=m(y1+y2)+4=2m2+4,故圆心M的坐标为(m2+2,m),圆M的半径r=.由于圆M过点P(4,-2),因此·=0,故(x1-4)(x2-4)+(y1+2)(y2+2)=0,即x1x2-4(x1+x2)+y1y2+2(y1+y2)+20=0.由(1)可知y1y2=-4,x1x2=4,所以2m2-m-1=0,解得m=1或m=-.当m=1时,直线l的方程为x-y-2=0,圆心M的坐标为(3,1),圆M的半径为,圆M的方程为(x-3)2+(y-1)2=10.当m=-时,直线l的方程为2x+y-4=0,圆心M的坐标为,圆M的半径为,圆M的方程为2+2=. [基础送分 提速狂刷练]一、选择题1.(xx·豫北名校联考)圆(x-2)2+y2=4关于直线y=x对称的圆的方程是( )A.(x-)2+(y-1)2=4B.(x-)2+(y-)2=4C.x2+(y-2)2=4D.(x-1)2+(y-)2=4答案 D解析 设圆(x-2)2+y2=4的圆心(2,0)关于直线y=x对称的点的坐标为(a,b),则有解得a=1,b=,从而所求圆的方程为(x-1)2+(y-)2=4.故选D.2.(xx·湖南长沙二模)圆x2+y2-2x-2y+1=0上的点到直线x-y=2距离的最大值是( )A.1+ B.2 C.1+ D.2+2答案 A解析 将圆的方程化为(x-1)2+(y-1)2=1,圆心坐标为(1,1),半径为1,则圆心到直线x-y=2的距离d==,故圆上的点到直线x-y=2距离的最大值为d+1=+1,故选A.3.圆心在y轴上且通过点(3,1)的圆与x轴相切,则该圆的方程是( )A.x2+y2+10y=0 B.x2+y2-10y=0C.x2+y2+10x=0 D.x2+y2-10x=0答案 B解析 设圆心为(0,b),半径为r,则r=|b|,∴圆的方程为x2+(y-b)2=b2.∵点(3,1)在圆上,∴9+(1-b)2=b2,解得b=5.∴圆的方程为x2+y2-10y=0.故选B.4.(xx·山西运城模拟)已知圆(x-2)2+(y+1)2=16的一条直径通过直线x-2y+3=0被圆所截弦的中点,则该直径所在的直线方程为( )A.3x+y-5=0 B.x-2y=0C.x-2y+4=0 D.2x+y-3=0答案 D解析 直线x-2y+3=0的斜率为,已知圆的圆心坐标为(2,-1),该直径所在直线的斜率为-2,所以该直径所在的直线方程为y+1=-2(x-2),即2x+y-3=0,故选D.5.(xx·唐山期末)若当方程x2+y2+kx+2y+k2=0所表示的圆取得最大面积时,则直线y=(k-1)x+2的倾斜角α=( )A. B. C. D.答案 A解析 将圆x2+y2+kx+2y+k2=0化成标准方程,得2+(y+1)2=1-,∵半径r满足r2=1-,当圆取得最大面积时,k=0,半径r=1.因此直线y=(k-1)x+2即y=-x+2.得直线的倾斜角α满足tanα=-1,∵直线的倾斜角α∈[0,π),∴α=.故选A.6.若方程 -x-m=0有实数解,则实数m的取值范围( )A.-4≤m≤4 B.-4≤m≤4C.-4≤m≤4 D.4≤m≤4答案 B解析 由题意知方程=x+m有实数解,分别作出y=与y=x+m的图象,如图,若两图象有交点,需-4≤m≤4.故选B.7.(xx·广东七校联考)圆x2+y2+2x-6y+1=0关于直线ax-by+3=0(a>0,b>0)对称,则+的最小值是( )A.2 B. C.4 D.答案 D解析 由圆x2+y2+2x-6y+1=0知其标准方程为(x+1)2+(y-3)2=9,∵圆x2+y2+2x-6y+1=0关于直线ax-by+3=0(a>0,b>0)对称,∴该直线经过圆心(-1,3),即-a-3b+3=0,∴a+3b=3(a>0,b>0).∴+=(a+3b)=≥=,当且仅当=,即a=b时取等号,故选D.8.(xx·唐山一中调研)点P(4,-2)与圆x2+y2=4上任一点连线的中点的轨迹方程是( )A.(x-2)2+(y+1)2=1 B.(x-2)2+(y+1)2=4C.(x+4)2+(y-2)2=4 D.(x+2)2+(y-1)2=1答案 A解析 设圆上任意一点为(x1,y1),中点为(x,y),则即代入x2+y2=4,得(2x-4)2+(2y+2)2=4,化简得(x-2)2+(y+1)2=1.故选A.9.(xx·山东菏泽一模)已知在圆M:x2+y2-4x+2y=0内,过点E(1,0)的最长弦和最短弦分别是AC和BD,则四边形ABCD的面积为( )A.3 B.6 C.4 D.2答案 D解析 圆x2+y2-4x+2y=0可化为(x-2)2+(y+1)2=5,圆心M(2,-1),半径r=,最长弦为圆的直径,∴AC=2.∵BD为最短弦,∴AC与BD垂直,易求得ME=,∴BD=2BE=2=2.S四边形ABCD=S△ABD+S△BDC=BD·EA+BD·EC=BD·(EA+EC)=BD·AC=×2×2=2.故选D.10.已知点P(x,y)在圆C:x2+y2-6x-6y+14=0上,则x+y的最大值与最小值是( )A.6+2,6-2 B.6+,6-C.4+2,4-2 D.4+,4-答案 A解析 设x+y=b,则b表示动直线y=-x+b在y轴上的截距,显然当动直线y=-x+b与圆(x-3)2+(y-3)2=4相切时,b取得最大值或最小值,如图所示.由圆心C(3,3)到切线x+y=b的距离等于圆的半径2,可得=2,即|b-6|=2,解得b=6±2,所以x+y的最大值为6+2,最小值为6-2.故选A.二、填空题11.(xx·天津高考)已知圆C的圆心在x轴的正半轴上,点M(0,)在圆C上,且圆心到直线2x-y=0的距离为,则圆C的方程为________.答案 (x-2)2+y2=9解析 因为圆C的圆心在x轴的正半轴上,设C(a,0),且a>0,所以圆心到直线2x-y=0的距离d==,解得a=2,所以圆C的半径r=|CM|==3,所以圆C的方程为(x-2)2+y2=9.12.(xx·广东七校联考)一个圆与y轴相切,圆心在直线x-3y=0上,且在直线y=x上截得的弦长为2,则该圆的方程为________.答案 (x-3)2+(y-1)2=9或(x+3)2+(y+1)2=9解析 ∵所求圆的圆心在直线x-3y=0上,∴设所求圆的圆心为(3a,a),又所求圆与y轴相切,∴半径r=3|a|又所求圆在直线y=x上截得的弦长为2,圆心(3a,a)到直线y=x的距离d=,∴d2+()2=r2,即2a2+7=9a2,∴a=±1.故所求圆的方程为(x-3)2+(y-1)2=9或(x+3)2+(y+1)2=9.13.(xx·金牛期末)已知a∈R,若方程a2x2+(a+2)y2+4x+8y+5a=0表示圆,则此圆心坐标是________.答案 (-2,-4)解析 ∵方程a2x2+(a+2)y2+4x+8y+5a=0表示圆,∴a2=a+2≠0,解得a=-1或a=2,当a=-1时,方程化为x2+y2+4x+8y-5=0,配方得(x+2)2+(y+4)2=25,所得圆的圆心坐标为(-2,-4),半径为5;当a=2时,方程化为x2+y2+x+2y+2.5=0,此时D2+E2-4F<0,方程不表示圆,所以圆心坐标为(-2,-4).14.(xx·河北邯郸模拟)已知圆O:x2+y2=8,点A(2,0),动点M在圆上,则∠OMA的最大值为________.答案 解析 设|MA|=a,因为|OM|=2,|OA|=2,由余弦定理知cos∠OMA===≥×2=,当且仅当a=2时等号成立,∴∠OMA≤,即∠OMA的最大值为.三、解答题15.(xx·洛阳统考)已知圆S经过点A(7,8)和点B(8,7),圆心S在直线2x-y-4=0上.(1)求圆S的方程;(2)若直线x+y-m=0与圆S相交于C,D两点,若∠COD为钝角(O为坐标原点),求实数m的取值范围.解 (1)线段AB的中垂线方程为y=x,由得所以圆S的圆心为S(4,4),圆S的半径为|SA|=5,故圆S的方程为(x-4)2+(y-4)2=25.(2)由x+y-m=0变形得y=-x+m,代入圆S的方程,消去y并整理得2x2-2mx+m2-8m+7=0.令Δ=(-2m)2-8(m2-8m+7)>0,得8-5