文档详情

新编江西省南昌市高三第三次模拟考试数学文试卷及答案

沈***
实名认证
店铺
DOC
305.51KB
约10页
文档ID:62769368
新编江西省南昌市高三第三次模拟考试数学文试卷及答案_第1页
1/10

20xx届江西省南昌市高三第三次文科数学模拟试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,若,则( )A. B. C. D.2.已知,是虚数单位,若,,则为( )A.或 B. C. D.不存在的实数3.“”是“关于的方程有解”的( )A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 4.已知函数,那么函数的值域为( )A. B. C. D.5.在平面直角坐标系中,已知双曲线与双曲线有公共的渐近线,且经过点,则双曲线的焦距为( )A. B. C. D.6.执行如图所示的程序框图,若输出的,则判断框内应填入的条件是( )A. B. C. D.7.已知,则的大小关系为( )A. B. C. D.8.在平面直角坐标系中,为坐标原点,点,则外接圆的半径为( )A. B. C. D.9.将函数的图象上所有点的横坐标压缩为原来的,纵坐标保持不变,得到图象,若,且,则的最大值为( )A. B. C. D.10.某几何的三视图如图所示,其中主视图由矩形和等腰直角三角形组成,左视图由半个圆和等腰直角三角形组成,俯视图的实线部分为正方形,则该几何体的表面积为( )A. B. C. D.11.为培养学生分组合作能力,现将某班分成三个小组,甲、乙、丙三人分到不同组,某次数学建模考试中三人成绩情况如下:在组中的那位的成绩与甲不一样,在组中的那位的成绩比丙低,在组中的那位成绩比乙低.若甲、乙、丙三人按数学建模考试成绩由高到低排序,则排序正确的是( )A.甲、丙、乙 B.乙、甲、丙 C. 乙、丙、甲 D.丙、乙、甲12.已知双曲线的左、右焦点分别为,以为圆心的圆与双曲线在第一象限交于点,直线恰与圆相切于点,与双曲线左支交于点,且,则双曲线的离心率为( )A. B. C. D.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.中国数学家刘徽在《九章算术注》中提出“割圆”之说:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体,而无所失矣”.意思是“圆内接正多边形的边数无限增多的时候,它的周长的极限是圆的周长,它的面积的极限是圆的面积”.如图,若在圆内任取一点,则此点取自其内接正六边形的概率 .14.已知函数的图象在点处的切线过点,则 .15.已知向量,,则在方向上的投影为 .16.现某小型服装厂锁边车间有锁边工名,杂工名,有台电脑机,每台电脑机每天可给件衣服锁边;有台普通机,每台普通机每天可给件衣服锁边.如果一天至少有件衣服需要锁边,用电脑机每台需配锁边工名,杂工名,用普通机每台需要配锁边工名,杂工名,用电脑机给一件衣服锁边可获利元,用普通机给一件锁边可获利元,则该服装厂锁边车间一天最多可获利 元.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 已知数列的各项均为正数,且.(1)求数列的通项公式;(2)若,求数列的前项和.18. 如图,多面体中,为正方形,,,且.(1)证明:平面平面;(2)求三棱锥的体积.19. 十九大提出:坚决打赢脱贫攻坚战,做到精准扶贫,某帮扶单位为帮助定点扶贫村真正脱贫,坚持扶贫同扶智相结合,帮助贫困村种植蜜柚,并利用互联网电商渠道进行销售.为了更好地销售,现从该村的蜜柚树上随机摘下了个蜜柚进行测重,其质量分布在区间内(单位:克),统计质量的数据作出其频率分布直方图如图所示:(1)按分层抽样的方法从质量落在的蜜柚中随机抽取个,再从这个蜜柚中随机抽个,求这个蜜柚质量均小于克的概率;(2)以各组数据的中间数值代表这组数据的平均水平,以频率代表概率,已知该贫困村的蜜柚树上大约还有个蜜柚待出售,某电商提出两种收购方案:所有蜜柚均以元/千克收购;低于克的蜜柚以元/个收购,高于或等于的以元/个收购.请你通过计算为该村选择收益最好的方案.20.已知动圆过点,并与直线相切.(1)求动圆圆心的轨迹方程;(2)已知点,过点的直线交曲线于点,设直线的斜率分别为,求证:为定值,并求出此定值.21. 已知函数.(1)求函数的单调区间;(2)当时,恒成立,求的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在平面直角坐标系中,曲线的参数方程为:(为参数,)将曲线经过伸缩变换:得到曲线.(1)以原点为极点,轴的正半轴为极轴建立坐标系,求的极坐标方程;(2)若直线(为参数)与,相交于两点,且,求的值.23.选修4-5:不等式选讲已知函数.(1) 求不等式的解集;(2) 设,证明:NCS20xx0607 项目第三次模拟测试卷一、选择题1-5:DAABD 6-10:ADACA 11、12:CB二、填空题13. 14. 15. 16.三、解答题17.解:(1)由得,所以或,又因为数列的各项均为正数,负值舍去所以.(2)由,所以①②由①-②得:所以.18.解:(1)证明:∵,由勾股定理得:又正方形中,且∴平面,又∵面,∴平面平面(2)由已知,连接交于作于,则又由(1)知平面平面,平面平面,面,得面由,知四边形为平行四边形,即,而,进而又由,所以,三棱锥的体积.19.解:(1)由题得蜜柚质量在和的比例为,∴应分别在质量为的蜜柚中各抽取个和个.记抽取质量在的蜜柚为,质量在的蜜柚为,则从这个蜜柚中随机抽取个的情况共有以下种:其中质量小于克的仅有这种情况,故所求概率为.(2)方案好,理由如下:由频率分布直方图可知,蜜柚质量在的频率为同理,蜜柚质量在的频率依次为若按方案收购:根据题意各段蜜柚个数依次为于是总收益为(元)若按方案收购:∵蜜柚质量低于克的个数为蜜柚质量低于克的个数为∴收益为元∴方案的收益比方案的收益高,应该选择方案.20.解:(1)设由得动圆圆心轨迹方程为(2)当斜率为时,直线斜率不存在(不合题意,舍去)当斜率不为时,设方程:,即设由,得,且恒成立∴∴(定值)21.解:(1)函数的定义域为,∵,∴,解得或;,解得,∴的单调递减区间为,单调递增区间为.(2)∵在恒成立∴,令,则,当时,;当时,,∴在上单调递减,在上单调递增,∴,∴.22.解:(1)的普通方程为,把代入上述方程得,,∴的方程为,令所以的极坐标方程为;(2)在(1)中建立的极坐标系中,直线的极坐标方程为,由,得,由,得,而,∴,而,∴或.23.解:(1)(i)当时,原不等式可化为,解得,此时;(ii)当时,原不等式可化为,解得,此时无解;(iii)当时,原不等式可化为,解得,此时;综上,或(2)因为因为,所以,所以,即欢迎访问“高中试卷网”——http://sj.fjjy.org。

下载提示
相关文档
正为您匹配相似的精品文档