文档详情

2022年高考物理一轮复习专题四同步卫星双星等模型精讲深剖

xuey****n398
实名认证
店铺
DOC
213KB
约10页
文档ID:158350451
2022年高考物理一轮复习专题四同步卫星双星等模型精讲深剖_第1页
1/10

2022年高考物理一轮复习专题四同步卫星双星等模型精讲深剖【专题解读】1.本专题是万有引力定律在天体运行中的特殊运用,同步卫星是与地球(中心)相对静止的卫星;而双星或多星模型有可能没有中心天体,近年来常以选择题形式在高考题中出现.2.学好本专题有助于学生加深万有引力定律的灵活应用,加深力和运动关系的理解.3.需要用到的知识:牛顿第二定律、万有引力定律、圆周运动规律等.考向一 地球同步卫星1.定义:相对于地面静止且与地球自转具有相同周期的卫星叫地球同步卫星.2.“七个一定”的特点(1)轨道平面一定:轨道平面与赤道平面共面.(2)周期一定:与地球自转周期相同,即T=24 h.(3)角速度一定:与地球自转的角速度相同.(4)高度一定:由G=m(R+h)得地球同步卫星离地面的高度h=3.6×107 m.(5)速率一定:v= =3.1×103 m/s.(6)向心加速度一定:由G=ma得a==gh=0.23 m/s2,即同步卫星的向心加速度等于轨道处的重力加速度.(7)绕行方向一定:运行方向与地球自转方向相同. 【例1】利用三颗位置适当的地球同步卫星,可使地球赤道上任意两点之间保持无线电通讯.目前,地球同步卫星的轨道半径约为地球半径的6.6倍.假设地球的自转周期变小,若仍仅用三颗同步卫星来实现上述目的,则地球自转周期的最小值约为(  )A.1 h B.4 h C.8 h D.16 h【答案】B解决同步卫星问题的“四点”注意1.基本关系:要抓住:G=ma=m=mrω2=mr.2.重要手段:构建物理模型,绘制草图辅助分析.3.物理规律(1)不快不慢:具有特定的运行线速度、角速度和周期.(2)不高不低:具有特定的位置高度和轨道半径.(3)不偏不倚:同步卫星的运行轨道平面必须处于地球赤道平面上,只能静止在赤道上方的特定的点上.4.重要条件(1)地球的公转周期为1年,其自转周期为1天(24小时),地球的表面半径约为6.4×103 km,表面重力加速度g约为9.8 m/s2. (2)月球的公转周期约27.3天,在一般估算中常取27天.(3)人造地球卫星的运行半径最小为r=6.4×103 km,运行周期最小为T=84.8 min,运行速度最大为v=7.9 km/s .阶梯练习1. 如图,若两颗人造卫星a和b均绕地球做匀速圆周运动,a、b到地心O的距离分别为r1、r2,线速度大小分别为v1、v2,则(  )A.=     B.=C.=2 D.=2【答案】A.【解析】对人造卫星,根据万有引力提供向心力=m,可得v= ,所以对于a、b两颗人造卫星有=,故选项A正确.2.(xx·高考四川卷) 国务院批复,自xx年起将4月24日设立为“中国航天日”.1970年4月24日我国首次成功发射的人造卫星东方红一号,目前仍然在椭圆轨道上运行,其轨道近地点高度约为440 km,远地点高度约为2 060 km;1984年4月8日成功发射的东方红二号卫星运行在赤道上空35 786 km的地球同步轨道上.设东方红一号在远地点的加速度为a1,东方红二号的加速度为a2,固定在地球赤道上的物体随地球自转的加速度为a3,则a1、a2、a3的大小关系为(  )A.a2>a1>a3 B.a3>a2>a1C.a3>a1>a2 D.a1>a2>a3【答案】D.3.假设地球和火星都绕太阳做匀速圆周运动,已知地球到太阳的距离小于火星到太阳的距离,那么(  )A.地球公转的周期大于火星公转的周期B.地球公转的线速度小于火星公转的线速度C.地球公转的加速度小于火星公转的加速度D.地球公转的角速度大于火星公转的角速度【答案】D.【解析】根据G=m2r=m=man=mω2r得,公转周期T=2π ,故地球公转的周期较小,选项A错误;公转线速度v= ,故地球公转的线速度较大,选项B错误;公转加速度an=,故地球公转的加速度较大,选项C错误;公转角速度ω= ,故地球公转的角速度较大,选项D正确.4.研究表明,地球自转在逐渐变慢,3亿年前地球自转的周期约为22小时.假设这种趋势会持续下去,地球的其他条件都不变,未来人类发射的地球同步卫星与现在的相比(  )A.距地面的高度变大B.向心加速度变大C.线速度变大D.角速度变大【答案】A5.(多选)地球同步卫星离地心的距离为r,运行速率为v1,加速度为a1,地球赤道上的物体随地球自转的向心加速度为a2,地球的第一宇宙速度为v2,半径为R,则下列比例关系中正确的是(  )A.= B.=()2C.= D.=【答案】AD【解析】设地球的质量为M,同步卫星的质量为m1,在地球表面绕地球做匀速圆周运动的物体的质量为m2,根据向心加速度和角速度的关系有a1=ωr,a2=ωR,又ω1=ω2,故=,选项A正确;由万有引力定律和牛顿第二定律得G=m1,G=m2,解得=,选项D正确.考向二 双星或多星模型1.双星模型(1)定义:绕公共圆心转动的两个星体组成的系统,我们称之为双星系统,如图2所示.(2)特点:①各自所需的向心力由彼此间的万有引力相互提供,即=m1ωr1,=m2ωr2②两颗星的周期及角速度都相同,即T1=T2,ω1=ω2③两颗星的半径与它们之间的距离关系为:r1+r2=L(3)两颗星到圆心的距离r1、r2与星体质量成反比,即=.2.多星模型(1)定义:所研究星体的万有引力的合力提供做圆周运动的向心力,除中央星体外,各星体的角速度或周期相同.(2)三星模型:①三颗星位于同一直线上,两颗环绕星围绕中央星在同一半径为R的圆形轨道上运行(如图3甲所示).②三颗质量均为m的星体位于等边三角形的三个顶点上(如图乙所示).图3(3)四星模型:①其中一种是四颗质量相等的恒星位于正方形的四个顶点上,沿着外接于正方形的圆形轨道做匀速圆周运动(如图丙所示).②另一种是三颗恒星始终位于正三角形的三个顶点上,另一颗位于中心O,外围三颗星绕O做匀速圆周运动(如图丁所示).【例2】由三颗星体构成的系统,忽略其他星体对它们的作用,存在着一种运动形式,三颗星体在相互之间的万有引力作用下,分别位于等边三角形的三个顶点上,绕某一共同的圆心O在三角形所在的平面内做相同角速度的圆周运动(图4为A、B、C三颗星体质量不相同时的一般情况).若A星体质量为2m、B、C两星体的质量均为m,三角形的边长为a,求:图4(1)A星体所受合力大小FA;(2)B星体所受合力大小FB;(3)C星体的轨道半径RC;(4)三星体做圆周运动的周期T.【答案】(1)2G (2)G (3)a (4)π则合力大小为FA=FBA·cos 30°+FCA·cos 30°=2G阶梯练习6.双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的某一点做周期相同的匀速圆周运动.研究发现,双星系统演化过程中,两星的总质量、距离和周期均可能发生变化.若某双星系统中两星做圆周运动的周期为T,经过一段时间演化后,两星总质量变为原来的k倍,两星之间的距离变为原来的n倍,则此时圆周运动的周期为(  )A.T B.TC.T D.T【答案】B【解析】设两恒星的质量分别为m1、m2,距离为L,双星靠彼此的引力提供向心力,则有G=m1r1G=m2r2并且r1+r2=L解得T=2π当两星总质量变为原来的k倍,两星之间距离变为原来的n倍时T′=2π=·T故选项B正确.7.银河系的恒星中大约四分之一是双星.如图5所示,某双星由质量不等的星体S1和S2构成,两星在相互之间的万有引力作用下绕两者连线上某一定点O做匀速圆周运动.由天文观察测得它们的运动周期为T,若已知S1和S2的距离为r,引力常量为G,求两星的总质量M.图5【答案】知识总结一、近地卫星、同步卫星和赤道上随地球自转的物体的比较如图6所示,a为近地卫星,半径为r1;b为同步卫星,半径为r2;c为赤道上随地球自转的物体,半径为r3.图6近地卫星同步卫星赤道上随地球自转的物体向心力万有引力万有引力万有引力的一个分力轨道半径r1r3=r1角速度由=mrω2得ω= ,故ω1>ω2同步卫星的角速度与地球自转角速度相同,故ω2=ω3ω1>ω2=ω3线速度由=得v=,故v1>v2由v=rω得v2>v3v1>v2>v3向心加速度由=ma得a=,故a1>a2由a=rω2得a2>a3a1>a2>a3二、卫星追及相遇问题【例3】 (多选)如图7所示,三个质点a、b、c的质量分别为m1、m2、M(M远大于m1及m2),在c的万有引力作用下,a、b在同一平面内绕c沿逆时针方向做匀速圆周运动,已知轨道半径之比为ra∶rb=1∶4,则下列说法中正确的有(  )图7A.a、b运动的周期之比为Ta∶Tb=1∶8B.a、b运动的周期之比为Ta∶Tb=1∶4C.从图示位置开始,在b转动一周的过程中,a、b、c共线12次D.从图示位置开始,在b转动一周的过程中,a、b、c共线14次 点评 某星体的两颗卫星之间的距离有最近和最远之分,但它们都处在同一条直线上,由于它们的轨道不是重合的,因此在最近和最远的相遇问题上不能通过位移或弧长相等来处理,而是通过卫星运动的圆心角来衡量,若它们初始位置在同一直线上,实际上内轨道所转过的圆心角与外轨道所转过的圆心角之差为π的整数倍时就是出现最近或最远的时刻,而本题中a、b、c三个质点初始位置不在一条直线上,故在列式时要注意初始角度差.【答案】AD。

下载提示
相关文档
正为您匹配相似的精品文档