某综合车间局部通风除尘系统设计 ----------------------------------------------------------------------------------- 摘要本次课程设首先是将车间划分成两个区域然后计算出各设备排风罩的排风量,计算系统的排风量及阻力,进行除尘器和风机的选择,绘制通风系统布置图,绘制通风系统轴侧图 考虑到车间粉尘污染的特点以及进出空间的限制,比较各种类型的除尘器,选择了最合理的通风除尘方案,进行了通风除尘系统的设计关键词:风量;风压;排风罩;除尘某综合车间局部通风除尘系统设计目 录1前言 12排风量计算 32.1设备参数 32.2各设备排风量计算 42.3各管路排风量计算 73各通风系统的排风量和阻力计算 93.1第一工作区排风量和阻力计算 93.1.1绘制轴测图 93.1.2确定管径和单位长度的摩擦阻力 93.1.3确定各管段的局部阻力系数 103.1.4计算各管段的沿程摩擦阻力和局部阻力 123.1.5对并联管路进行阻力平衡计算 133.1.6除尘器及风机的选择 153.1.7管道计算汇总 163.2第二工作区排风量和阻力计算 173.2.1绘制轴测图 173.2.2确定管径和单位长度摩擦力 173.2.3确定各管段的局部阻力系数 183.2.4计算各管段的延程摩擦阻力和局部阻力 193.2.5对并联管路进行阻力平衡计算 193.2.6除尘器及风机的选择 193.2.7管道计算汇总 204总结 21附录I 22附录II 23参考文献 24 第24页 -----------------------------------------------------------------------------------1前言人类在生产和生活的过程中,需要有一个清洁的空气环境(包括大气环境和室内空气或境)。
因此,就要在生产和生活的过程采用通风和除尘技术通风工程在我国实现四个现代化的进程中,一方面起着改善居住建筑和生产车间的空气条件,保护人民健康、提高劳动生产率的重要作用;另一方面在许多工业部门又是保证生产正常进行,提高产品质量所不可缺少的一个组成部分工业通风是控制车间粉尘、有害气体或蒸气和改善车间内微小气候的重要卫生技术措施之一其主要作用在于排出作业地带污染的或潮湿、过热或过冷的空气,送入外界清洁空气,以改善作业场所空气环境工业通风按其动力来源分为自然通风和机械通风自然通风依靠室内外空气温度差所形成的热压和室外风力所形成的风压而使空气流动;机械通风则依靠通风机所形成的通风系统内外压力差而使空气沿一定方向流动净化工业生产过程中排放出的含尘气体称为工业除尘 风机生产行业引进国外技术,改变了以往风机全压偏小、不适用于除尘系统的状况新产品不但全压满足除尘工程的需求,而且噪声低、机械效率高、振动小,并有较好的防磨措施 除尘系统风量调节技术的应用越来越普遍以往仅靠液力耦合器使风机变速,现在已有多种变频调速器,适用于不同规格的电机,因而风量调节更易实现除尘系统风量调节,离不开流量监测,已开发出含尘气体流量连续监测装置,具有不堵、阻力小、应用方便等特点,在除尘系统运行中发挥了很好的作用。
有些生产过程如原材料加工、食品生产、水泥等排出的粉尘都是生产的原料或成品,回收这些有用原料,具有很大的经济意义在这些部门,除尘设备既是环保设备又是生产设备工业防尘技术的前景是广大的:1、工业防尘法规更完善,执法更强化进入21世纪,我国经济将继续高速发展,公众对工作和生活环境的要求将更高,有关法规更趋完善,执法力度将更为加强工业防尘技术必须在高效、低耗、可靠、方便等方面达到一个新的水平2、加强工业防尘技术标准的建设目前,许多防尘设施不规范,标准化程度差,质量不高,达不到预期效果在尘源控制方面,尤显薄弱,工业防尘技术标准化问题,已直接影响工业防尘工作的进行3、工业防尘技术将与生产工艺更紧密结合首先,积极促进生产工艺及设备的改进,努力实现本质无害化,达到事半功倍之效;其次,工业防尘技术应力求促进产品产量和质量的提高;再者,应更方便操作和维修4、工业防尘将紧密结合节能通过工业防尘技术的实施,使生产工艺简化,生产能耗降低;促进二次能源的回收;在保证防尘效果的同时,尽量减少处理风量,降低系统阻力,从而降低自身能耗等等本次课程主要是运用通风除尘技术知识对某综合车间局部通风除尘系统进行设计选取通风管道、除尘器及风机。
2排风量计算2.1设备概述通风管道设计计算主要包括以下步骤(通风除尘):1、确定通风除尘系统方案,绘制管路系统轴测图;2、对管路系统分段,注明管段长度、风量管部件位置等进行编号;3、假定管路系统不同管段的风速;4、根据假定速度和已知管段的风量确定各管段管径,计算管路阻力;5、通风除尘系统中的各并联支管的阻力平衡计算,其差值不宜大于10%;一般通风系统管路阻力不超过15%;6、计算系统管路总阻力;7、除尘设备和通风机的选择本次课程设计的车间包括两个工作区,两个工作区内的主要设备如表2.1所示车间的高度为6.6米工作温度为20℃,在20℃时空气密度为1.2Kg/m3根据以上步骤,分别对第一工作区和第二工作区进行了管道设计当车间内有不同的送、排风要求,或者车间面积较大,送、排风点较多时,为了便于运行管理,常分设多个送、排风系统划分的原则:1、空气处理要求相同时、室内参数要求相同的,可划为一个系统2、同一生产流程、运行班次和运行时间相同的,可划为一个系统3、同一生产流程、同时工作的扬尘点相距不大时,宜合为一个系统4、有毒和无毒的生产区,宜分开设置通风系统和净化系统若不要求回收,并且混合后不会爆炸或者混合后不会导致风管内结露的,可以合为一个系统。
5、排风量大的排风电位于风机附近,不和远处排风量小的排风点和为同一个系统根据以上原则、各工艺设备产生的有害物成分,及厂区平面布置图,将1、2、3、4号设备划分为第一区,5、6号设备划分为第二区,各设备参数见表2.1 表2.1参数表区域设备编号设备工艺尺寸排风罩形式有害物成分设计参数第一工作区域1、2焊接平台1000×800×600侧吸罩焊烟有害物距罩口0.4热源温度600℃3焊接平台1100×900×600矩形伞形罩焊烟有害物距罩口0.7热源温度600℃4金属喷镀800×800(工作口)通风柜金属粉尘顶部接管标高1.5控制风速1~1.5温度300℃第二工作区域5镀 铬600×600(工作口)通风柜氢氟酸蒸汽顶部接管标高1.6常温6酸 洗1000×800×1200槽边排风罩25%盐酸温度60℃2.2各设备排风量计算1、2号侧吸罩排风量由表2.1知,设备1为焊接平台,其尺寸为1000×800×600 mm,排风罩形式为侧吸罩,有害物成分是焊烟根据经验,设侧吸罩的罩口尺寸为400×800 mm有害物距罩口的距离即为控制点至吸气口的距离x,即x=400mm;并取最小控制风速 在《工业通风》中第36页,控制点的控制风速VX表中查得。
Vx=0.3m/s因此x/b=400/400=1.0,b/a =400/800=0.5,查得 在《工业通风》中第35页,矩形吸气口速度计算图中查得Vx/V0=0.15,罩口平均风速V0= Vx/0.15=0.3/0.15=2 m/s所以,实际排风量L1=FV0=0.4×0.8×2=0.64m3/s3号矩形伞形罩排风量由表2.1知,设备3为焊接平台,其尺寸为1100×900×600 mm,排风罩形式为矩形伞形罩,有害物成分是焊烟焊接平台的排风罩是热源上方的接收式排风罩,在计算排风量前要判断该罩是否为低悬罩低悬罩的判断公式为: (2.1)式中:H--为罩口到污染源的距离,m; AP--为热源的水平投影面积,m2由公式(2.1)得: ,所以该罩为低悬罩 (2.2) (2.3) (2.4) (2.5) (2.6)式中:α--对流放热系数,J/m2s℃; A--系数,水平散热面为1.7; △t--热源表面与周围空气的温度差,℃; F--热源的对流放热面积,m2; Q--热源的对流热量,kJ/s; B--热源水平投影的长边尺寸,m; L0--罩口断面上热射流流量,m3/s; v′--扩大面积上的空气吸入速度,v′=0.5-0.75m/s; F′--罩口的扩大面积,m2。
由公式(2.2)计算得: 由公式(2.3)计算得: 由公式(2.4)、(2.5)计算得: 由于受横向气流影响较小,排风罩口的尺寸应比热源尺寸扩大200mm,即:矩形伞型罩的长宽分别为1300 mm和1100 mm由公式(2.6)计算得: 4号通风柜排风量根据公式: (2.7)式中通风柜的排风量,;工作孔上的控制风速,通常在1.0~1.5之间,本次取1.25;工作孔或缝隙的面积,;安全系数,1.1~1.2;柜内的污染气体发生量,当取最大值时,近似为0;计算得到,通风柜的排风量0.965号通风柜排风量根据公式(2.7)得: 6号槽边排风罩排风量由表2.1知,设备6的工艺为酸洗,酸洗槽的尺寸为1000×800×1200,排风罩形式为槽边排风罩,有害物成分是25%盐酸槽边排风罩分为单侧和双侧两种,单侧适用于曹宽B≤700mm,B>700mm时用双侧因为本设备槽宽B=800>700,所以槽边排风罩选为双侧根据国家标准设计,条缝式槽边排风罩的断面尺寸(E×F)共三种,250×200mm,250×250mm,200×200mm。
本设计选用E×F=250×250mmE=250mm的称为高截面高截面双侧排风(总风量)计算公式 在《工业通风》中第47页中查得为: (2.8)式中:A—槽长,m; B—槽宽,m;Vx—边缘控制点的控制风速,m/s 本设计中为0.4 m/s 在《工业通风》中第228页,附录5 镀槽边缘控制点的吸入速度Vx中查得 由公式(2.8)得高截面双侧排风(总风量)为:2.3各管路排风量计算将第一区设备用管道连接,对各管段进行编号如图2.1图2.1 管道连接图1号管路排风量即为1号排风罩排风量 同理,,3号管路风量为排入风量之和即: 8号管路和9号管路排风量相同为除尘器排入风量的1.05倍将第二区设备用管道连接,对各管段进行编号如图2.2图2.2管道连接图同理,,, 3各通风系统的排风量和阻力计算3.1第一工作区排风量和阻力计算3.1.1绘制轴测图标出各管段长度和各排风点的排风量,轴测图详见附录I3.1.2确定管径和单位长度的摩擦阻力在第一工作区内,设除尘风管垂直管最小风速,水平管最小风速,空气密度管段1:通风管路为圆形钢板制风管根据公式: (3.1) (3.2) (3.3)式中 管道内的风量,;管道直径,;管道截面积,;管道内的风速,;由公式3.3得,根据通风管道统一规格,取,则实际流速,根据,可确定单位长度摩擦阻力系数。
同理,可计算并查出管段2、3、4、5、6、7、8、9的管径、实际流速、单位长度摩擦阻力及各管段摩擦阻力其结果见表3.23.1.3确定各管段的局部阻力系数管段1:设备侧吸罩,,查得;90°弯头(R=1.5d)两个; ;直流三通(1-3),,;管段2:设备侧吸罩,,查得;90°弯头(R=1.5d)一个;120°弯头(R=1.5d)一个; 合流三通(2-3),,;管段3: 直流三通(3-5),,管段4:设备矩形伞形罩,,查得;120°弯头(R=1.5d)一个; 合流三通(4-5),,;管段5: 直流三通(5-7),,管段6:90°弯头(R=1.5d)一个;120°弯头(R=1.5d)一个; 合流三通(6-7),,;管段7:90°弯头(R=1.5d)两个;管段8:90°弯头(R=1.5d)一个管段9:在排尘管出口有一个带扩散管的伞形风帽(h/D=0.5),查得:3.1.4计算各管段的沿程摩擦阻力和局部阻力根据公式 (3.4)式中 ——局部阻力系数; ——风管内空气的平均流速,; ——空气的密度,; ——风管长度,m; 可算出局部阻力,具体数据见表3.2。
3.1.5对并联管路进行阻力平衡计算 汇合点A:对汇合点A(见附录I)进行阻力平衡计算,=189.53,=150.8依据公式: (3.5) (3.6)式中 调整后的管径,㎜; 原设计的管径,㎜; 原设计的支管阻力,; 要求达到的支管阻力,为使管段1、2达到阻力平衡,改变管段2的管径,增大其阻力根据公式(3.6):根据通风管道统一规格,取算出其对应的阻力:根据公式(3.5): ,符合要求汇合点B:根据公式(3.6): 根据通风管道统一规格,取算出其对应的阻力:根据公式(3.5): ,符合要求汇合点C:; 根据公式(3.6): 根据通风管道统一规格,取算出其对应的阻力:根据公式(3.5): 此时仍处于不平衡状态如继续减小管径,取,其对应阻力为581Pa,同样处于不平衡状态因此决定取,在运行时再辅以阀门调节,消除不平衡3.1.6除尘器及风机的选择选择除尘器时必须全面考虑各种因素的影响,在设计中应考虑以下匹配问题: (1)除尘器出口净化后气体的粉尘浓度要与环保规定的排放浓度要求相匹配。
设计时应根据处理气体的粉尘浓度, 处理量和环保规定的排放要求确定所要求除尘器的除尘效率, 然后选择合适的除尘器类型在运行中, 还应注意由于运动工况不稳定对除尘效率的影响2)除尘器的性能要与处理的气体特性和粉尘性质相匹配气体的温度、湿度、腐蚀性、可燃与爆炸性等都直接制约除尘器的使用如袋式除尘器不能用于处理高温、高湿的气体粉尘的粒径及其分布、粘结性、湿润性、比电阻、可燃性和浓度等性质直接决定了除尘器的除尘效果和应用不同的除尘器所能去除的粉尘粒径范围也不同;对于粘结性粉尘不宜采用袋式除尘器;比电阻大的粉尘电除尘效果差;疏水性粉尘不宜采用湿式除尘器;粉尘浓度高时应考虑采用双级除尘3)除尘器的收尘方法要与除下粉尘的处理方法相匹配例如直接丢弃, 应考虑对环境的二次污染问题4)除尘器的费用要与企业的经济实力相匹配对于小型生产厂应选用结构简单的、设备费和运动费少的除尘设备表3.1 除尘器的性能除尘器名称适用的粒径范围(μm)效率(%)阻力(Pa)设备费运行费重力沉降室惯性除尘器旋风除尘器卧式旋风水膜除尘器电除尘器袋式除尘器文丘里除尘器>5020-505-15≥50.5-10.5-10.5-1<5050-7060-9095-9890-9895-9990-9850-130300-800800-1500800-120050-1301000-15004000-10000少少少中在中上少少少中中中上大大本系统的主要有害物为烟尘、金属粉尘,粒径范围大约在0.5——1μm之间,本次设计选取袋式除尘器,从上部排风,选择MC84-Ⅰ型脉冲袋式除尘器,箱体下部进风,过滤面积为63mm2 、滤袋数量为84个、过滤风速2-4m/s、脉冲伐数14个、处理风量7550~15100m3/h,阻力为1000Pa。
外形尺寸:2490×1555×1350计算系统总阻力和风量:选择风机:风机风量风机风压风机: 型号:C4-72NO.5A 主轴转速(r/min):2900流量():13255 全压():2567功率(Kw):12.72轴功率(Kw):11.07效率 84.6%电动机:型号:功率(Kw):153.1.7管道计算汇总将以上计算的数据进行整理、汇总,最后,得到表3.2管道水利汇总表(一区)具体数据见表表3.2管道水利汇总表(一区)管道编号流量长度m管径mm流速m/s局部阻力系数 局部阻力Pa单位长度摩擦阻力Pa/m摩擦阻力Pa管段阻力Pa备注10.641022016.81.031741616033420.64622016.80.671131696209阻力不平衡31.28432015.9-0.01-1.5104038.540.584.320018.50.86176.72086262.7阻力不平衡51.86236018.30.120.1102040.160.9611.628015.60.5783.210116199.2阻力不平衡72.861445018.00.3466.1798164.182.96645018.60.1735.384883.392.963045018.60.6124.58240364.520.642002031940.5818020.841360.9625019.6329除尘器10003.2第二工作区排风量和阻力计算3.2.1绘制轴测图标出各管段长度和各排风点的排风量,轴测图详见附录I。
3.2.2确定管径和单位长度摩擦力在第二工作区内,设除尘风管垂直管最小风速,水平管最小风速,空气密度由公式3.3得,根据通风管道统一规格,取,则实际流速,根据,可确定单位长度摩擦阻力系数同理,可计算并查出管段2、3、4的管径、实际流速、单位长度摩擦阻力及各管段摩擦阻力其结果见表3.33.2.3确定各管段的局部阻力系数管段1:通风柜的ζ=0.5; 90°弯头(R=1.5d)一个; ; ; 合流三通(1-3),,;管段2:设备槽边排风罩, 合流三通(2-3),,;120°弯头(R=1.5d)一个;90°弯头(R=1.5d)两个;管段3:90°弯头(R=1.5d)三个;管段4:在排尘管出口有一个带扩散管的伞形风帽(h/D=0.5),查得:3.2.4计算各管段的延程摩擦阻力和局部阻力根据公式3.4可算出局部阻力,具体数据见表3.23.2.5对并联管路进行阻力平衡计算根据公式(3.5)(3.6)得:为使管段1、2达到阻力平衡,改变管段1的管径,增大其阻力根据公式(3.6): 根据通风管道统一规格,取算出其对应的阻力根据公式(3.5): 符合要求3.2.6风机的选择计算系统总阻力和风量:选择风机:风机风量:风机风压:。
风机型号:C4-72NO.5A 主轴转速(r/min):1450流量():6064 全压():693功率(Kw): 1.76轴功率(Kw):1.35内效率 86.1%电动机:型号:功率(Kw):2.23.2.7管道计算汇总将以上计算的数据进行整理、汇总,最后,得到表3.3 管道水利计算表(二区)具体数据见表表3.3管道水利计算表(二区)管道编号流量长度m管径mm流速m/s局部阻力系 数局部阻 力Pa单位长度摩擦阻力Pa/m摩擦阻力Pa管段阻力Pa备注10.549250110.4734.165488.1阻力不平衡20.83832010.33.52224.13.830.4254.531.3715.640010.90.5136.43.554.69141.443040011.50.647.64120167.6 1,0.5420017.1237.54总结许多生产过程如水泥、耐火材料、有色金属冶炼、铸造等都会散发大量粉尘,如果任意向大气排放,将污染大气,危害人民健康,影响工农业生产因此含尘空气必须经过净化处理,达到排放标准才排入大气通风除尘系统就是净化含尘空气的有效手段通风除尘系统的设计合理安排并布置管道,正确计算局部阻力和摩擦阻力以及最后确定风机的风压,这一系列的过程让我对通风除尘系统设计的流程有了一个系统的了解。
通过课程设计达到了对工业通风这们课程的知识的深化的目的,把课程内容贯穿,使它更加系统化,逻辑化 附录I附录II参考文献[1] 张殿印、王坚. 除尘工程设计手册[M]. 北京:化学工业出版社,2003.6[2] 孙一坚. 工业通风[M]. 北京:化学工业出版社,2006[3] 常华. 尘毒治理技术[M]. 沈阳:航空工业出版社,1995[4] 陆跃庆. 供暖通风设计手册[M]. 北京:中国建筑出版社,1997[5] 贾永康. 供热通风与空调工程施工技术[M]. 北京:机械工业出版社,2005[6] 李家瑞. 工业企业环境保护手册[M]. 北京:冶金工业出版社,1993。