文档详情

2022年高中物理必修2第一章第二节《运动的合成与分解》word导学案

wuxin****2020
实名认证
店铺
DOC
150.50KB
约11页
文档ID:159775177
2022年高中物理必修2第一章第二节《运动的合成与分解》word导学案_第1页
1/11

2022年高中物理必修2第一章第二节《运动的合成与分解》word导学案课前自主预习1. 分运动和合运动:一个物体同时参与几个运动,参与的这几个运动都是 ,物体的实际运动就是合运动.答案:分运动2. 运动的合成:已知分运动求合运动,叫做运动的合成.(1)同一条直线上的两分运动的合成:同向 ,反向 .(2)不在同一条直线上的两分运动合成时,遵循 .答案:相加 相减 平行四边形定则3.运动的分解:已知合运动求分运动,叫做运动的分解.(1)运动的分解是运动的合成的 .(2)分解方法:根据运动的实际效果分解或 分解.答案:逆过程 正交4. (双选) 关于运动的合成与分解,以下说法正确的是( ) A.由两个分运动求合运动,合运动不是唯一确定的B.由合运动分解为两个分运动,可以有不同的分解方法C.物体做曲线运动时,才能将这个运动分解为两个分运动D.任何形式的运动,都可以用几个分运动代替解析:如果分运动确定了,合运动也是唯一确定的,A错,合运动分解为两个分运动时,可以根据运动的实际效果分解或正交分解,B对,任何形式的运动,可以用两个或两个以上的分运动来代替,只要分运动和合运动的运动效果一样就可以,所以C错,D对。

答案: BD5. (单选) 对运动的合成与分解,理解正确的是:( )A.是为了把复杂的运动转化为简单或已知的运动B.运动的分解就是把一个运动分前后两步完成C.运动的合成就是把两个运动的物体看成一个物体D.合运动的速度总是大于每个分运动的速度已换题解析:对一个运动的分解的目的是把复杂的运动转化为简单或已知的运动,我们更容易分析,A正确;所有分运动和合运动具有同时性,没有先后之分,B错;运动的合成和分解都是相对于同一个物体而言的,C错;速度的合成遵循平行四边形定则,合速度可能大于分速度,也可能等于分速度,也可能小于分速度,D错答案:A课堂互动探究知识点1 分运动与合运动标题已改新知探究xx年4月22日至27日,中俄海军在黄海水域举行了名为“海上联合-xx”联合军事演习,演习的课题是“海上联合防御和保交作战”,按照作战筹划、实兵演习、海上阅兵和交流研讨四个阶段组织图1-2-2为由某航空母舰起飞的战斗机投弹时情景讨论:图1-2-2(1)假设战斗机正在匀速飞行,边飞行边投出炮弹,若忽略空气阻力不计,我们可以观察到从战斗机投出的炮弹一直处于战斗机的 2)由于 ,炮弹离开飞机时,在水平方向有与飞机相同的速度,炮弹在水平方向上做与飞机速度相同的 运动;又由于受到 的作用,炮弹在竖直方向上做 运动;故从地面上看炮弹一直在飞机的正下方下落。

3)我们把炮弹在空中的 称为炮弹的合运动,把炮弹在水平方向上的匀速直线运动和竖直方向上的自由落体运动称为炮弹的两个 4)炮弹在水平方向上的分运动和在竖直方向上的分运动共同产生的效果与合运动的效果是 答案:(1)正下方 (2)惯性 匀速直线 重力 自由落体 (3)实际运动 分运动 (4)相同的重点归纳1.定义:如果一个物体实际发生的运动产生的效果与两外两个分运动共同产生的效果相同,我们就把该物体实际发生的运动叫做这两个分运动的合运动,这两个运动叫做这一实际运动的分运动2.合运动与分运动的关系(1)运动的独立性一个物体同时参与两个(或多个)运动,其中的任何一个运动并不会受其他分运动的干扰,而保持其运动性质不变,这就是运动的独立性原理.虽然各分运动互不干扰,但是它们共同决定合运动的性质和轨迹.(2)运动的等时性各个分运动与合运动总是同时开始,同时结束,经历时间相等(不同时的运动不能合成).(3)运动的等效性各分运动叠加起来与合运动有相同的效果.(4)运动的同一性各分运动与合运动,是指同一物体参与的分运动和实际发生的运动,不是几个不同物体发生的不同运动. [例1](单选)1. 关于合运动和分运动,下列说法正确的是( ) A. 两个分运动是先后进行的 B. 两个分运动可以先后进行,也可以同时进行C. 两个分运动一定是同时进行的 D. 先有两个同时进行的分运动,后有合运动解析:根据分运动与合运动的等时性,个分运动与合运动总是同时开始,同时结束,经历时间相等,故C正确。

答案:C触类旁通1. (双选) 合运动与分运动的关系,下列说服正确的是( )A. 某分运动变化可以影响到合运动,但不会对其它分运动造成任何影响B. 合运动的时间可能等于各分运动时间之和C. 合运动的时间一定等于分运动的时间 D. 一个合运动只能有两个互相垂直的分运动解析:根据运动的独立性和等时性,A、C正确,B错;一个合运动可以分解为两个分运动,也可以分解为多个分运动,故D错答案:AC知识点2 运动的合成与分解图1-2-3新知探究一人一猴玩杂技,如图1-2-3所示,猴子沿直杆由A向B匀速向上爬,向上爬行的速度为3m/s,同时人用头顶着直杆水平匀速移动,移动速度为4m/s,已知在10 s内,猴子由A运动到B,而人由甲位置运动到了乙位置.讨论:(1)猴子实际的合运动可以分解成 方向的与人一样匀速移动,和 方向的匀速沿杆爬行两个互相垂直的分运动2)猴子水平方向的位移,与人在水平方向的位移一样,是 m,而竖直方向的位移为 m,从图1-2-3上看,这两个位移所构成的平行四边形的对角线刚好就是猴子的实际总位移,为 m3)猴子水平方向的速度,与人在水平方向的位移一样,是4m/s,而竖直方向的速度为3m/s,从图1-2-3上看,这两个速度所构成的平行四边形的对角线刚好就是猴子的实际总速度,为 m/s。

(4)猴子运动的分位移、分速度的合成都遵循矢量的合成法则,即 定则答案:(1)水平 竖直 (2)40 30 50 (3)5 (4)平行四边形重点归纳1.定义已知分运动求合运动叫运动的合成,已知合运动(实际运动)求分运动叫运动的分解2.运动的合成与分解的目的运动的合成与分解的目的是把一些复杂的运动,例如曲线运动,简化为比较简单的运动,例如直线运动,这样就可以应用已掌握的有关直线运动的规律,来研究一些复杂的曲线运动3.运算法则已修改运动的合成和分解是指位移、速度、加速度矢量的合成和分解,必须按实际情况进行,遵循平行四边形定则.如果各分运动都在同一直线上,我们可以选择沿该直线的某一方向作为正方向,与正方向相同的矢量取正值,与正方向相反的矢量取负值,这时就可以把矢量运算简化为代数运算例如匀变速直线运动公式和等都属于这种情况如果各分运动互成一定的角度,则要运用平行四边形定则、三角形定则等方法求解图1-2-44.两个互成角度的直线运动的合运动是直线运动还是曲线运动,这取决于它们的合速度v和合加速度a是否共线(如图1-2-4所示). 常见的类型有:(1)a=0:性质为匀速直线运动或静止.(2)a恒定:性质为匀变速运动.有以下三种情况:①v、a同向,物体做匀加速直线运动;②v、a反向,物体做匀减速直线运动;③v、a成角度,物体做匀变速曲线运动(轨迹在v、a之间,和速度v的方向相切,方向逐渐向a的方向接近,但不可能达到).(3)a变化:性质为变加速运动,加速度大小、方向都随时间变化.5.运动分解的原则(1)等效性原则,两个分运动的效果与实际的合运动完全等效,可以互相替代;(2)符合实际的原则,根据实际分运动的效果将合运动分解;(3)解题方便原则,在不违背等效性原则的前提下,根据解题的需要进行正交分解。

[例2](双选) 关于运动的合成与分解,以下说法正确的是( ) A.由两个分运动求合运动,合运动不是唯一确定的B.由合运动分解为两个分运动,可以有不同的分解方法C.物体做曲线运动时,才能将这个运动分解为两个分运动D.任何形式的运动,都可以用几个分运动代替解析:如果分运动确定了,合运动也是唯一确定的,A错,合运动分解为两个分运动时,可以根据运动的实际效果分解或正交分解,B对,任何形式的运动,可以用两个或两个以上的分运动来代替,只要分运动和合运动的运动效果一样就可以,所以C错,D对答案: BD触类旁通2.(单选)关于互成角度(不为零度和180°)的一个匀速直线运动和一个初速度不为零的匀变速直线运动的合运动,下列说法正确的是( )A.一定是直线运动B.一定是曲线运动C.可能是直线,也可能是曲线运动D.以上答案都不对解析:要确定一个合运动到底是直线运动还是曲线运动,要把两个分运动的初速度合成合初速度,再把两个分运动的加速度合成合加速度,若合初速度和合加速度在同一直线上,则合运动是直线运动,否则是曲线运动一个匀速直线运动和一个匀变速直线运动,初速度不在同一直线上,则合初速度和合加速度一定不在同一直线上,故合运动一定是曲线运动,B正确。

答案:B方法技巧\易错易混\实验透视方法技巧小船渡河问题如图1-2-5所示,v1为小船在静水中速度,v2为水流速度,θ为v1与河岸的夹角,d为河宽.(1)小船渡河的最短时间.小船渡河时间仅由v1垂直于河岸的分量v1sin θ决定,即t=,与v2无关.当θ=时,t有最小值,过河最短的时间为t=(如图1-2-5甲).图1-2-5(2)小船渡河的最小位移(分两种情况讨论).①当v1>v2时,小船渡河的最小位移即为河宽,这时航向(船头的方向)应斜向上游,则cos θ=,且v1>v2时才有可能垂直渡河(如图1-2-5乙).②当v1

1. 绳端速度:即绳子末端的速度,也就是与绳末端相连的物体的速度,是合速度例如题4中,绳左端的速度就是船的速度V,绳右端的速度是人的速度v,v与V都是合速度2.绳身的“移动”速度:是指绳子通过滑轮的速度,其大小对于同一根绳来说,个点均相同,其方向总是沿着绳子方向绳身移动速度是联系两端物体速度关系的纽带,它在绳的两端往往又扮演着不同角色,可能等于物体速度,也可能是物体速度的一个分量判断方法是:看绳端物体速度方向是否沿着绳子方向,如果绳端速度沿着绳子的方向,那么绳身移动的速度就是物体的速度例如题4中,绳身移动速度在右端等于人的速度v;若绳端物体速度方向与绳子有一定夹角时,则绳身速度就是物体的一个分速度,例如题4中,绳身移动速度在左端就是小船速度V的一个分量3.绳身的“转动”速度:当绳身移动速度作为绳子某端物体速度的一个分速度时,该绳端物体速度的另一个分速度,就是与绳子垂直的“转动”速度,该速度反映绳子以滑轮为轴,向上或向下转动的快慢例如题4中,小船靠岸的过程中,绳左端绕滑轮向下转动,则绳左端转动速度的方向是垂直于绳子向下的4.关联速度分解总结(1) 绳子或杆末端运动速度的分解,应按运动的实际效果进行。

(2) 速度投影定理:不可伸长的绳或杆,尽管各点的速度不同,但各点速度沿绳或杆方向的投影是相同的,即绳子、杆两个端点的合速度分解到沿绳子、杆方向的速度是相等的,此速度称为“关联”速度 【例4】如图1-2-8所示,一人站在岸上,利用绳和定滑轮,拉船靠岸,在某一时刻绳的速度为v,绳AO段与水平面夹角为θ,不计摩擦和轮的质量,则此时小船的水平速度多大?图1-2-8错因:将绳的速度按图1-2-9所示的方法分解,则v1即为船的水平速度,v1=vcos θ.上述错误的原因是没有弄清船的运动情况.实际上船是在做平动,每一时刻船上各点都有相同的水平速度.而AO绳上各点运动比较复杂,既有平动又有转动.以连接船上的A点来说,它有沿绳的平动分速度v,也有与v垂直方向的速度vn,即转动分速度;A点的合速度vA即为两个分速度的和(如图1-2-10),vA=.图1-2-9  图1-2-10正解:小船的运动为平动,而绳AO上各点的运动是平动加转动.以连接船上的A点为研究对象,如图1-2-10所示,A的平动速度为v,转动速度为vn,合速度vA即与船的平动速度相同,由图可以看出vA=.触类旁通5.如图1-2-11所示,车甲以速度v1拉车乙前进,乙的速度为v2,甲、乙都在水平面上运动,求v1∶v2.图1-2-11 图3解:如图所示,将汽车乙的实际运动速度v2分解为沿绳方向的分运动和沿垂直于绳方向的分运动,由于绳不伸长和缩短,必然应满足: v1= v2cos即可求得:v1∶ v2= cos分析讲解此题时关键是要抓住①垂直分量对绳的伸长和缩短不会产生影响②只要平行分量与汽车甲的运动速度相等即可保证绳不伸长和缩短。

答案:v1∶ v2= cos图1-2-126.如图1-2-12所示,当放在墙角的均匀直杆A端靠在竖直墙上,B端放在水平地面上,当滑到图示位置时,B点速度为v,则A点速度是 为已知)解析:设A点速度沿墙竖直向下即杆A点的速度沿杆的分速度等于杆B点的速度沿杆的分速度相等根据速度投影定理:得答案:随堂练习已经修改一、单项选择题1.关于分运动和合运动,下列说法正确的是( A )A.两个分运动是同时进行的B.先有分运动,后有合运动C.两个分运动可以是先后进行,也可以是同时进行D.合运动的轨迹一定是曲线解析:根据分运动与合运动的等时性及等效性可知选项A对,选项B、C错;而合运动既可为直线运动也可为曲线运动,故选项D错.2.小船在静水中速度为v,现小船要渡过一条河流,渡河时小船的船头向垂直对岸划行.若小船划行至河中心时,河水流速忽然增大,则渡河时间与预定时间相比,将( B )A.增大 B.不变 C.缩短 D.无法确定解析:船在流水中的运动,可认为船在静水中运动和水流运动的合成,由分运动独立性知,两者互不干涉.过河时间仅取决于河宽和船在静水中的速度,因此,当水流速度增大时,过河时间不会发生变化.3.一小船以一定的速度垂直于河岸向对岸航行,下列关于船所通过的路程、过河所用的时间与水流速度的大小关系的说法中正确的是( D )A.水流速度越大,过河时间越短,路程越大B.水流速度越大,过河时间越长,路程越大C.路程和时间与水流速度无关D.过河时间与水流速度无关解析:由运动的独立性原理可知渡河时间决定于船速,与河水流速无关.船的路程指的是合运动的路程,与流速有关,故选项D对.4.下列关于运动的分解的说法,正确的是( B )A.一个在平面上的曲线运动不可能分解为直线运动B.一个初速度不为零的匀变速直线运动可分解为一个匀速直线运动和一个初速度为零的匀加速直线运动C.沿斜面向下的直线运动可分解为一个水平方向的匀速直线运动和一个竖直方向的匀加速直线运动D.一个匀速直线运动不可能再分解解析:在平面上的曲线运动可以分解为两个直线运动;沿斜面下滑的物体有两种情况,一种是匀速直线运动,这样可分为水平和竖直方向的匀速直线运动,另一种是匀变速直线运动,加速度沿着斜面,故可分解为水平和竖直方向的两个匀变速直线运动;任何一个矢量均可分解,故选项A、C、D错,B对.5.关于运动的合成和分解,下述说法中正确的是( C )A.合运动的速度大小等于分运动的速度大小之和B.物体的两个分运动若是直线运动,则它的合运动一定是直线运动 C.合运动和分运动具有同时性D.若合运动是曲线运动,则其分运动中至少有一个是曲线运动解析:合速度与分速度遵循平行四边形定则,故选项A错;当物体的两个分运动都是直线运动时,其合运动可能是直线运动,也可能是曲线运动,故B、D错.二、双项选择题6.已知两个分运动是互相垂直的,一个是匀速直线运动,一个是初速度为零的匀变速直线运动,则下列说法正确的是( BC )A.合运动一定是直线运动 B.合运动一定是曲线运动C.合运动的加速度一定不变 D.合运动的加速度可能改变解析:两个分运动的合初速度方向与合加速度方向垂直,且合加速度恒定,故选项B、C对.课后巩固提升已做修改一、单项选择题1.关于运动的合成与分解,以下说法不正确的是( D )A.由两个分运动求合运动,合运动是唯一确定的B.由合运动分解为两个分运动,可以有无数种分解方法C.任何一种形式的运动均可以由几个分运动替代D.合运动的速度大小一定大于任一个分运动的速度大小解析:根据矢量三角形法作出矢量图即可作出正确判断.2.降落伞在匀速下降过程中遇到水平方向吹来的风,若风速越大,则降落伞( D )A.下落的时间越短 B.下落的时间越长C.落地时速度越小 D.落地时速度越大解析:由分运动的独立性和等时性知,降落伞下落的时间与水平方向的风速无关,只与所处的高度有关,故下落时间不变.由运动的合成知,若水平方向的风速越大,则降落伞落地时的速度越大.3.下列说法正确的是( C )A.合运动和分运动互相影响,不能独立进行B.合运动的时间一定比分运动的时间长C.合运动和分运动具有等时性,即同时开始,同时结束D.合运动的位移大小等于两个分运动位移的大小之和解析:合运动和分运动具有等时性、独立性和等效性,则选项A、B错,C对;合运动的位移大小应该等于分运动的位移矢量和大小,故D错.4.如图1-2-1所示,由v1、v2、v3为边长组成的四个三角形,且v1<v2<v3,根据运动的合成,在四个图中三个速度v1、v2、v3的合速度最大的是(  )图1-2-1解析:由三角形定则,在图A中v1、v2的合速度大小为v3,再与图中v3合成,合速度为2v3,图B中合速度为0,图C中v3、v2的合速度为v1,与图中v1再合成,合速度为2v1,图D中的合速度为2v2,其中最大的合速度为2v3,故A正确.答案:A二、双项选择题5.如果两个分运动的速度大小相等,且为定值,则以下说法中正确的是( AC )A.若两个分运动夹角为零,合速度最大B.若两个分运动的夹角为90°,合速度大小与分速度大小相等C.若两个分运动的夹角等于120°,合速度的大小等于分速度大小D.合速度的大小随两个分运动的夹角增大而增大解析:用矢量三角形可知选项A、C正确.6.关于合运动和分运动,以下说法中正确的是( AC )A.两个匀速直线运动的合运动一定是匀速直线运动B.不在同一直线上的两个匀速直线运动的合运动不一定是匀速直线运动C.不在同一直线上一个匀速直线运动和一个匀变速直线运动的合运动一定是曲线运动D.两个匀变速直线运动的合运动一定是匀变速直线运动7.关于互成角度的两个初速度不为零的匀变速直线运动的合运动,下列说法正确的是( CD )A.一定是直线运动B.一定是曲线运动C.一定是匀变速运动D.可能是直线运动,也可能是曲线运动解析:两个分运动都是匀变速直线运动,分运动加速度都恒定,合加速度必恒定,所以物体做匀变速运动.用平行四边形定则分别求出两个分运动的合速度v和合加速度a.若a与v在一条直线上,则合运动为直线运动;若a与v不在一条直线上,则合运动为曲线运动.8.对于某一运动在某一时刻的两个分速度分别为6 m/s和8 m/s,则可以判断该运动在该时刻的合速度大小可能为( BC )A.1 m/s B.5 m/s C.14 m/s D.16 m/s解析:速度的合成遵循矢量的运算法则|v1-v2|≤v合≤|v1+v2|,即2 m/s≤v合≤14 m/s,故选项B、C正确.9.一小船在静水中运动的速度为3 m/s,若要过一条宽为60 m,河水流速为4 m/s的河,则下列说法中正确的是( CD )A.小船无论如何也不能渡过这条河B.小船相对于河岸的速度一定是5 m/sC.小船渡河的最短时间是20 sD.小船无论如何也不能抵达正对岸解析:由运动独立性知渡河的最短时间tmin== s=20 s,由于v船

v2v1v车θ所以B上升的速度V就等于绳伸长的速度V=v1=vcosθ小车匀速向右运动,θ逐渐减小,cosθ变大,可知,A的速度V变大,故A做加速运动,由A得受力及牛顿第二定律可知绳的拉力大于A的重力11.小河宽为d,河水中各点的水流速度与各点到较近河岸边的距离成正比, v水=kx,其中k=,x是各点到近岸的距离.当小船船头垂直河岸渡河时,船速为v0,则下列说法中正确的是( BC )A.小船渡河时的轨迹为直线B.小船渡河时的轨迹为曲线C.小船到达距河对岸处,船的渡河速度为v0D.小船到达距河对岸处,船的渡河速度为v0解析:由曲线运动的特点知,选项A错,B对;当小船到达距河对岸处时,水流的速度为v水=kx=×=v0,小船的合速度v==v0,当小船到达距河对岸处时,该点到较近河岸边的距离为,所以小船的合速度为v0,所以C对,D错.12.一质点在xOy平面内从O点开始运动的轨迹如图1-2-5所示,则质点的速度( BD )已增加解析图1-2-5A.若x方向始终匀速,则y方向先加速后减速B.若x方向始终匀速,则y方向先减速后加速 C.若y方向始终匀速,则x方向先减速后加速 D.若y方向始终匀速,则x方向先加速后减速 解析:根据题意,若x方向始终匀速,故质点沿x轴方向的外力为零,质点只受到y轴方向的外力作用,根据轨迹又可以确定速度方向(切线方向),又根据轨迹弯曲的方向确定质点受到y轴外力方向(外力指向轨迹弯曲的内侧),即质点合外力先沿y轴向下,然后沿y轴向上,故质点沿y轴先减速,后加速,B正确;同理可判断D正确。

三、非选择题13.北风速度为4 m/s,大河中的水流正以3 m/s的速度向东流动,船上的乘客看见轮船烟囱冒出的烟柱是竖直的,求轮船相对于水的航行速度多大?什么方向?解:水平方向上,船相对烟柱静止,其运动方向与烟柱相同,烟柱的方向与风向一致,而北风南吹,故船的实际航向为正南,大小为4 m/s.由于河水流动,轮船应该有一个分速度:大小与v水相等,方向与v水相反,这样轮船才会朝正南方向行驶,如图13所示,v风为实际速度,是合速度,v水是分速度,v船是轮船相对于水的航行速度,是分速度.图13tan θ==,则θ=37°即船头应该与上游河岸成53°角航行且v船== m/s=5 m/s.14.有一小船正在渡河,如图1-2-3所示,在离对岸30 m 时,其下游40 m处有一危险水域.假若水流速度为5 m/s,为了使小船在危险水域之前到达对岸,那么,小船从现在起相对于静水的最小速度应是多大?图1-2-3  图14解:设当小船到达危险水域前,恰好到达对岸,其合速度方向沿AC方向,合位移方向与河岸的夹角α,小船相对于静水的速度为v1,水流速度v2=5 m/s,如图14所示.此时小船水平方向位移x=40 m,竖直方向位移y=30 m,则小船相对岸的位移s==50 m,sin α===.为使船速最小,应使v1与v垂直,则v1=v2sin α=5× m/s=3 m/s.。

下载提示
相关文档
正为您匹配相似的精品文档